LEADER 00780nam0-2200253 --450 001 9910846187403321 005 20240429155247.0 100 $a20240429d1965----kmuy0itay5050 ba 101 2 $aeng$afre 102 $aRO 105 $aa 001yy 200 1 $aSymposium on methods in soil biology$eCluj. Novembre 1966 210 $aBucharest$cRumanian National Society of soil science$d 215 $a323 p.$d21 cm 610 0 $aBilogia 676 $a574$v23$zita 710 12$aSymposium on methods in soil biology$f<1965$e; Bucarest>$01736578 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910846187403321 952 $aA MIC 919$b7014/2024$fFAGBC 959 $aFAGBC 996 $aSymposium on methods in soil biology$94156519 997 $aUNINA LEADER 03043nam 22005055 450 001 9910851983503321 005 20250807152902.0 010 $a3-031-51414-9 024 7 $a10.1007/978-3-031-51414-2 035 $a(MiAaPQ)EBC31288986 035 $a(Au-PeEL)EBL31288986 035 $a(CKB)31548363700041 035 $a(DE-He213)978-3-031-51414-2 035 $a(MiAaPQ)EBC31290773 035 $a(Au-PeEL)EBL31290773 035 $a(EXLCZ)9931548363700041 100 $a20240419d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLectures on Geometry /$fby Lucian B?descu, Ettore Carletti 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (493 pages) 225 1 $aLa Matematica per il 3+2,$x2038-5757 ;$v158 311 08$a3-031-51413-0 327 $a1 Linear Algebra -- 2 Bilinear and quadratic forms -- 3 Affine Spaces -- 4 Euclidean Spaces -- 5 Affine hyperquadrics -- 6 Projective Spaces -- 7 Desargues' Axiom -- 8 General Linear Projective Automorphisms -- 9 Affine Geometry and Projective Geometry -- 10 Projective hyperquadrics -- 11 Bezout's Theorem for Curves of P^2(K) -- 12 Absolute plane geometry -- 13 Cayley-Klein Geometries. 330 $aThis is an introductory textbook on geometry (affine, Euclidean and projective) suitable for any undergraduate or first-year graduate course in mathematics and physics. In particular, several parts of the first ten chapters can be used in a course of linear algebra, affine and Euclidean geometry by students of some branches of engineering and computer science. Chapter 11 may be useful as an elementary introduction to algebraic geometry for advanced undergraduate and graduate students of mathematics. Chapters 12 and 13 may be a part of a course on non-Euclidean geometry for mathematics students. Chapter 13 may be of some interest for students of theoretical physics (Galilean and Einstein?s general relativity). It provides full proofs and includes many examples and exercises. The covered topics include vector spaces and quadratic forms, affine and projective spaces over an arbitrary field; Euclidean spaces; some synthetic affine, Euclidean and projective geometry; affine and projective hyperquadrics with coefficients in an arbitrary field of characteristic different from 2; Bézout?s theorem for curves of P^2 (K), where K is a fixed algebraically closed field of arbitrary characteristic; and Cayley-Klein geometries. 410 0$aLa Matematica per il 3+2,$x2038-5757 ;$v158 606 $aGeometry 606 $aGeometry 615 0$aGeometry. 615 14$aGeometry. 676 $a516 700 $aBa?descu$b Lucian$065842 702 $aCarletti$b Ettore 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910851983503321 996 $aLectures on Geometry$94264496 997 $aUNINA