LEADER 12846nam 22008535 450 001 9910851982903321 005 20240826123235.0 010 $a981-9722-42-X 024 7 $a10.1007/978-981-97-2242-6 035 $a(CKB)31801389200041 035 $a(MiAaPQ)EBC31305375 035 $a(Au-PeEL)EBL31305375 035 $a(MiAaPQ)EBC31319822 035 $a(Au-PeEL)EBL31319822 035 $a(DE-He213)978-981-97-2242-6 035 $a(EXLCZ)9931801389200041 100 $a20240424d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in Knowledge Discovery and Data Mining $e28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, Taipei, Taiwan, May 7?10, 2024, Proceedings, Part I /$fedited by De-Nian Yang, Xing Xie, Vincent S. Tseng, Jian Pei, Jen-Wei Huang, Jerry Chun-Wei Lin 205 $a1st ed. 2024. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2024. 215 $a1 online resource (406 pages) 225 1 $aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v14645 311 $a981-9722-41-1 327 $aIntro -- General Chairs' Preface -- PC Chairs' Preface -- Organization -- Contents - Part I -- Anomaly and Outlier Detection -- Spatial-Temporal Transformer with Error-Restricted Variance Estimation for Time Series Anomaly Detection -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Problem Formulation -- 3.2 Proposed Architecture -- 3.3 Error-Restricted Probability (ERP) Loss -- 3.4 Anomaly Score -- 4 Experiments -- 4.1 Dataset Description -- 4.2 Baseline Methods -- 4.3 Experimental Settings -- 4.4 Overall Results -- 4.5 Ablation Study -- 5 Conclusion -- References -- Multi-task Contrastive Learning for Anomaly Detection on Attributed Networks -- 1 Introduction -- 2 Problem Definition -- 3 The Proposed Framework -- 3.1 Subgraph Sampling Based Data Augmentation -- 3.2 Context Matching Contrastive Learning -- 3.3 Link Prediction Contrastive Learning -- 3.4 Model Training and Anomaly Score Inference -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Result and Analysis -- 4.3 Ablation Study -- 4.4 Parameter Study -- 5 Related Works -- 6 Conclusions -- References -- SATJiP: Spatial and Augmented Temporal Jigsaw Puzzles for Video Anomaly Detection -- 1 Introduction -- 2 Related Works -- 3 Problem Formulation: Frame-Level VAD -- 4 Proposal: SATJiP -- 4.1 Preliminary -- 4.2 Masked Temporal Jigsaw Puzzles (MTJiP) -- 5 Experiments -- 5.1 Datasets and Evaluation Metric -- 5.2 Implementation Details -- 5.3 Comparison in Detecting Accompanying Anomalies (AA) -- 5.4 Comparison in Detecting Diverse Video Anomalies -- 5.5 Ablation Study -- 5.6 VAD Examples -- 6 Conclusion -- References -- STL-ConvTransformer: Series Decomposition and Convolution-Infused Transformer Architecture in Multivariate Time Series Anomaly Detection -- 1 Introduction -- 2 Related Work -- 2.1 Prediction-Based Models -- 2.2 Reconstruction-Based Models. 327 $a2.3 Transformers for Time Series Analysis -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Overall Architecture -- 3.3 Data Preprocessing -- 3.4 Decomposition Block -- 3.5 Local-Transformer Encoder and Decoder -- 3.6 Loss Function and Anomaly Score -- 4 Experiments -- 5 Conclusion -- References -- TOPOMA: Time-Series Orthogonal Projection Operator with Moving Average for Interpretable and Training-Free Anomaly Detection -- 1 Introduction -- 2 Related Work -- 3 TOPOMA: Our Proposed Anomaly Detector -- 3.1 Problem Formulation -- 3.2 Moving Average of Orthogonal Projection Operators -- 3.3 Adaptive Choice of Anomaly Score Thresholds -- 3.4 Complexity Analysis -- 4 Results and Discussion -- 4.1 Synthetic Data -- 4.2 Real-World Data -- 5 Conclusion -- References -- Latent Space Correlation-Aware Autoencoder for Anomaly Detection in Skewed Data -- 1 Introduction -- 2 Related Work -- 3 Problem Formulation -- 3.1 Robust Hybrid Error with MD in Latent Space -- 3.2 Objective Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Baseline Methods -- 4.3 Ablation Study -- 5 Hyperparameter Sensitivity -- 6 Conclusion -- References -- SeeM: A Shared Latent Variable Model for Unsupervised Multi-view Anomaly Detection -- 1 Introduction -- 2 Proposed Model for Multi-view Anomaly Detection -- 2.1 The SeeM Model and Its Inference -- 2.2 Complexity Analysis -- 2.3 Anomaly Score -- 3 Experiments -- 3.1 Datasets and Baselines -- 3.2 Multi-view Anomaly Detection Performance -- 3.3 Latent Dimension Analysis -- 3.4 Non-linear Projections -- 3.5 A Use Case with Real-World Multi-view Data -- 4 Related Work -- 5 Conclusion -- References -- Classification -- QWalkVec: Node Embedding by Quantum Walk -- 1 Introduction -- 2 Preliminaries -- 2.1 Notations -- 2.2 Quantum Walks on Graphs -- 3 Related Works -- 3.1 Problems -- 4 Proposed Method: QWalkVec -- 4.1 Algorithm -- 5 Evaluations. 327 $a5.1 Experimental Settings and Dataset -- 5.2 Overall Results -- 6 Conclusion -- References -- Human-Driven Active Verification for Efficient and Trustworthy Graph Classification -- 1 Introduction -- 2 Related Work -- 2.1 Human-in-the-loop Machine Learning -- 2.2 Deep Learning for Case-Based Reasoning -- 2.3 Interpretable Graph Neural Networks -- 3 Methodology -- 3.1 Problem Formulation and Framework Overview -- 3.2 Human-Compatible Representation Learning -- 3.3 Interpretable Predictor -- 3.4 Prediction Explanation -- 4 Experiments -- 4.1 Datasets and Baselines -- 4.2 Implementations and Configurations -- 4.3 Predictive Performance Comparison -- 4.4 Benefits of Human-AI Interactions -- 4.5 User Perception of Prediction Explanations -- 4.6 Is Instance-Level Feedback Helpful in Any Cases? -- 5 Discussions of Fairness and Ethical Issues -- 6 Conclusion and Future Work -- References -- SASBO: Sparse Attack via Stochastic Binary Optimization -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Problem Definition -- 3.2 Sparse Adversarial Attack via Stochastic Binary Optimization -- 4 Experiments and Results -- 4.1 Non-targeted Attack -- 4.2 Targeted Attack -- 4.3 Visualization -- 5 Conclusion -- References -- LEMT: A Label Enhanced Multi-task Learning Framework for Malevolent Dialogue Response Detection -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Problem Definition -- 3.2 Overall Framework -- 3.3 Utterance Encoder -- 3.4 Malevolence Shift Detection -- 3.5 Hierarchy-Aware Label Encoder -- 3.6 Malevolence Detection in Dialogues -- 3.7 Multi-task Learning -- 4 Experiments -- 4.1 Datasets and Evaluation Metrics -- 4.2 Compared Baselines -- 4.3 Implementation Details -- 4.4 Main Results -- 4.5 Ablation Study -- 4.6 Analysis of Malevolence Shift Detection -- 4.7 Case Study -- 4.8 Analysis of LLMs -- 5 Conclusion -- References. 327 $aTwo-Stage Knowledge Graph Completion Based on Semantic Features and High-Order Structural Features -- 1 Introduction -- 2 Preliminary -- 2.1 Knowledge Graph -- 2.2 Knowledge Graph Completion -- 2.3 Dynamic Graph Attention Variant GATv2 -- 3 Methodology -- 3.1 Structural Local Contexts Aggregation -- 3.2 High-Order Connected Contexts Aggregation -- 3.3 Decoder -- 4 Experiment -- 4.1 Datasets and Metrics -- 4.2 Results and Analysis -- 4.3 Ablation Study -- 5 Conclusions -- References -- Instance-Ambiguity Weighting for Multi-label Recognition with Limited Annotations -- 1 Introduction -- 2 Related Works -- 2.1 Multi-label Recognition with Full Annotations -- 2.2 Multi-label Recognition with Limited Annotations -- 3 Methodology -- 3.1 Problem Definition -- 3.2 Ambiguity-Aware Instance Weighting -- 3.3 Total Training Loss -- 4 Experiments -- 4.1 Experiment Settings -- 4.2 Results -- 4.3 Ablation Studies -- 4.4 Model Analysis -- 5 Conclusion -- References -- Chaotic Neural Oscillators with Deep Graph Neural Network for Node Classification -- 1 Introduction -- 1.1 Node Classification -- 1.2 Graph Neural Network (GNN) -- 1.3 Chaotic Neural Oscillator (CNO) -- 2 Methodology -- 3 Experiment -- 3.1 Datasets -- 3.2 Settings and Baselines -- 3.3 Results -- 3.4 Ablation Study -- 4 Conclusion -- References -- Adversarial Learning of Group and Individual Fair Representations -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Methodology -- 4.1 Problem Statement -- 4.2 Model -- 4.3 Theoretical Properties of Loss Functions -- 4.4 Optimization with Focal Loss -- 5 Experiments and Analysis -- 6 Conclusion -- References -- Class Ratio and Its Implications for Reproducibility and Performance in Record Linkage -- 1 Introduction -- 2 Methodology -- 2.1 Data Partitioning -- 2.2 Classification and Evaluation -- 3 Experimental Study -- 3.1 Datasets -- 3.2 Results. 327 $a4 Discussion and Recommendations -- 5 Conclusions and Future Work -- References -- Clustering -- Clustering-Friendly Representation Learning for Enhancing Salient Features -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 The Framework of cIDFD -- 3.2 Loss for Background Feature Extraction -- 3.3 Loss for Target Feature Extraction -- 3.4 Two-Stage Learning -- 4 Experiments -- 4.1 Datasets -- 4.2 Comparison with Conventional Methods -- 4.3 Representation Distribution -- 4.4 Similarity Distribution -- 5 Conclusion -- References -- ImMC-CSFL: Imbalanced Multi-view Clustering Algorithm Based on Common-Specific Feature Learning -- 1 Introduction -- 1.1 Motivation -- 1.2 Contribution -- 2 Related Work -- 3 Imbalanced Multi-view Clustering Algorithm Based on Common-Specific Feature Learning (ImMC-CSFL) -- 3.1 Deep Feature Extraction Module -- 3.2 Common Information Learning Module -- 3.3 Specific Information Learning Module -- 3.4 Deep Multi-view Clustering Based on Common-Specific Feature Learning -- 4 Experiment -- 4.1 Experimental Datasets and Evaluation Criteria -- 4.2 Methods of Comparison -- 4.3 Experimental Results -- 5 Summary -- References -- Multivariate Beta Mixture Model: Probabilistic Clustering with Flexible Cluster Shapes -- 1 Introduction -- 2 Multivariate Beta Mixture Model -- 2.1 Multivariate Beta Distribution -- 2.2 MBMM Density Function and Generative Process -- 2.3 Parameter Learning for the MBMM -- 2.4 The Similarity Score Between Data Points -- 3 Experiments -- 3.1 Comparisons on the Synthetic Datasets -- 3.2 Comparison on the Real Datasets -- 3.3 Distance Between Data Points -- 4 Related Work -- 5 Discussion -- References -- AutoClues: Exploring Clustering Pipelines via AutoML and Diversification -- 1 Introduction -- 2 Related Works -- 3 AutoClues -- 3.1 Formalization -- 3.2 Implementation. 327 $a4 Benchmark Generation and Empirical Evaluation. 330 $aThe 6-volume set LNAI 14645-14650 constitutes the proceedings of the 28th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2024, which took place in Taipei, Taiwan, during May 7?10, 2024. The 177 papers presented in these proceedings were carefully reviewed and selected from 720 submissions. They deal with new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, big data technologies, and foundations. 410 0$aLecture Notes in Artificial Intelligence,$x2945-9141 ;$v14645 606 $aArtificial intelligence 606 $aAlgorithms 606 $aEducation$xData processing 606 $aComputer science$xMathematics 606 $aSignal processing 606 $aComputer networks 606 $aArtificial Intelligence 606 $aDesign and Analysis of Algorithms 606 $aComputers and Education 606 $aMathematics of Computing 606 $aSignal, Speech and Image Processing 606 $aComputer Communication Networks 615 0$aArtificial intelligence. 615 0$aAlgorithms. 615 0$aEducation$xData processing. 615 0$aComputer science$xMathematics. 615 0$aSignal processing. 615 0$aComputer networks. 615 14$aArtificial Intelligence. 615 24$aDesign and Analysis of Algorithms. 615 24$aComputers and Education. 615 24$aMathematics of Computing. 615 24$aSignal, Speech and Image Processing. 615 24$aComputer Communication Networks. 676 $a006.3 700 $aYang$b De-Nian$01737375 701 $aXie$b Xing$01734375 701 $aTseng$b Vincent S$01737376 701 $aPei$b Jian$0868267 701 $aHuang$b Jen-Wei$01737377 701 $aLin$b Jerry Chun-Wei$01453271 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910851982903321 996 $aAdvances in Knowledge Discovery and Data Mining$94159072 997 $aUNINA