LEADER 02433nam 22005535 450 001 9910847579803321 005 20240627175453.0 010 $a981-9986-68-0 024 7 $a10.1007/978-981-99-8668-2 035 $a(CKB)31491856900041 035 $a(MiAaPQ)EBC31278651 035 $a(Au-PeEL)EBL31278651 035 $a(DE-He213)978-981-99-8668-2 035 $a(EXLCZ)9931491856900041 100 $a20240415d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHilbert C*- Modules and Quantum Markov Semigroups /$fby Lunchuan Zhang 205 $a1st ed. 2024. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2024. 215 $a1 online resource (222 pages) 311 $a981-9986-67-2 320 $aIncludes bibliographical references and index. 327 $aBasic Theory of Hilbert C*-modules -- Kasprove?s Stabilization and Fredholm Generalized Index Theory -- Quantum Markov Semigroups and Operator-valued Dirichlet Forms. 330 $aThis book explains the basic theory of Hilbert C*-module in detail, covering a wide range of applications from generalized index to module framework. At the center of the book, the Beurling-Deny criterion is characterized between operator valued Dirichlet forms and quantum Markov semigroups, hence opening a new field of quantum probability research. The general scope of the book includes: basic theory of Hilbert C*-modules; generalized indices and module frames; operator valued Dirichlet forms; and quantum Markov semigroups. This book will be of value to scholars and graduate students in the fields of operator algebra, quantum probability and quantum information. 606 $aOperator theory 606 $aFunctional analysis 606 $aMarkov processes 606 $aOperator Theory 606 $aFunctional Analysis 606 $aMarkov Process 615 0$aOperator theory. 615 0$aFunctional analysis. 615 0$aMarkov processes. 615 14$aOperator Theory. 615 24$aFunctional Analysis. 615 24$aMarkov Process. 676 $a512.55 700 $aZhang$b Lunchuan$01736266 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910847579803321 996 $a- Modules and Quantum Markov Semigroups$94241130 997 $aUNINA