LEADER 10631nam 22004933 450 001 9910847083403321 005 20240412080246.0 010 $a3-031-52864-6 035 $a(CKB)31253135600041 035 $a(MiAaPQ)EBC31266962 035 $a(Au-PeEL)EBL31266962 035 $a(MiAaPQ)EBC31233397 035 $a(Au-PeEL)EBL31233397 035 $a(EXLCZ)9931253135600041 100 $a20240412d2024 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDrug Delivery and Targeting 205 $a1st ed. 210 1$aCham :$cSpringer International Publishing AG,$d2024. 210 4$d©2024. 215 $a1 online resource (408 pages) 225 1 $aHandbook of Experimental Pharmacology Series ;$vv.284 311 $a3-031-52863-8 327 $aIntro -- Preface -- Contents -- Part I: Nanoparticles and Other Advanced Technologies -- Knowledge-Based Design of Multifunctional Polymeric Nanoparticles -- 1 Introduction -- 2 Polymers for Nanoparticles -- 2.1 Important Aspects in Polymer Design -- 2.2 Functional Units for Targeted Drug Delivery -- 3 Formulation of Nanoparticles -- 3.1 Methods -- 3.2 Impact of Formulation Parameters on Particle Properties -- 4 Influence of the Nanoparticle Characteristics on Their Performance -- 5 Future Perspective -- References -- Stimuli-Responsive Non-viral Nanoparticles for Gene Delivery -- 1 Genetic Material as Active Ingredient for Drug Delivery -- 2 Current Status of Non-viral Nanoparticle for Gene Delivery -- 3 Biological Hurdles for Gene Delivery -- 4 Lipid-Based Delivery -- 5 Polymer-Based Delivery Systems -- 6 Conclusion -- References -- Sustainability in Drug and Nanoparticle Processing -- 1 Introduction -- 2 The Classical Way of Polymer Nanoformulation -- 3 Excipients in PLGA Nanoformulations -- 3.1 Typical Components of the W-Phase -- 3.2 The O-Phase and the Organic Solvents -- 4 Introduction of Alternative Solvents in the Nanoparticle Formulation Process: The Status Quo -- 5 New PLGA Formulation Technologies for the Application of Alternative Solvents -- 6 Physicochemical and Biological Characteristics of the Nanoparticles Produced with Alternative Solvents -- 7 Applicability of Alternative Solvents for In Situ Formation of Particles in Matrices -- 8 Conclusion -- References -- Advanced Formulation Approaches for Proteins -- 1 Introduction -- 2 Techniques Used in Protein Drug Delivery -- 2.1 Freeze-Drying -- 2.2 Spray-Drying -- 2.3 Spray-Freeze Drying -- 2.4 Electrohydrodynamic Processes -- 2.5 Emulsions -- 2.6 Microfluidics -- 2.7 Summary of Processing Techniques -- 3 Overview of Delivery Routes -- 3.1 Parenteral Delivery Routes. 327 $a3.2 Transdermal Delivery Route -- 3.3 Pulmonary Route -- 3.4 Oral Drug Delivery -- 4 Conclusions and Future Outlook -- References -- Microneedle and Polymeric Films: Delivery of Proteins, Peptides and Nucleic Acids -- 1 Current Challenges of Peptides, Proteins and Nucleic Acid Delivery Strategies -- 2 Introduction of Microneedle System and Polymeric Film -- 2.1 Introduction of MNs -- 2.1.1 Solid MNs -- 2.1.2 Coated MNs -- 2.1.3 Hollow MNs -- 2.1.4 Dissolving MNs -- 2.1.5 Hydrogel-Forming MNs -- 2.2 Introduction of Polymeric Films -- 3 Application of MNs and Polymeric Films in Facilitating Delivery of Protein, Peptide and Nucleic Acid -- 3.1 Miscellaneous Indications of Microneedles -- 3.2 Miscellaneous Indications of Polymeric Films -- 4 Conclusion and Future Prospects -- References -- Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules -- 1 Introduction -- 2 Nanomaterials as Adjuvants -- 2.1 Aluminum-Based Adjuvants -- 2.2 Other Inorganic Nanomaterials -- 2.3 Organic Nanofibers -- 2.4 Pickering Emulsions -- 3 Small Molecules as Adjuvants -- 3.1 TLR Agonists -- 3.2 mRNA -- 3.3 STING Agonists -- 4 Conclusion -- References -- Biodegradable Long-Acting Injectables: Platform Technology and Industrial Challenges -- 1 Introduction -- 2 Platform Technologies -- 2.1 Polymeric Systems -- 2.1.1 PLGA Microparticles -- Manufacture Processes of PLGA Microparticles -- Characterization of Polymeric Microparticles -- 2.1.2 Implants (Preformed and In Situ Forming Implants) -- Manufacturing Processes of Implants -- Characterization of Implants -- 2.2 Non-polymeric Systems -- 2.2.1 Oil-Based Solutions -- Manufacturing Processes of Oil-Based Solutions -- Characterization of Oil-Based Solutions -- 2.2.2 Aqueous Suspension (Micro/Nano Drug Crystals) -- Manufacturing Processes of Crystal Suspensions -- Characterization of Aqueous Suspensions. 327 $a2.3 Other Technologies -- 3 Important Criteria for Development of Long-Acting Drug Products -- 4 Conclusion -- References -- Part II: Visualization Technologies -- Visualization of Nanocarriers and Drugs in Cells and Tissue -- 1 Introduction -- 2 Methodology -- 2.1 Overview on Spectromicroscopy Techniques -- 2.2 Selected Techniques in Spectromicroscopy -- 2.2.1 Scanning Transmission X-Ray Microscopy (STXM) -- 2.2.2 Fluorescence Techniques in Biological Matter -- 2.2.3 Fluorescence Lifetime Imaging (FLIM) -- 3 Selected Results and Discussion -- 3.1 Depth Profiles of Topical Drug Delivery and Barrier Disruptions Probed by STXM -- 3.2 The Role of Drug Formulations Probed by STXM -- 3.3 Depth Profiles of Topical Nanocarrier-Based Drug Delivery Probed by FLIM -- 3.4 Skin Models and Cellular Fate of Nanocarriers Visualized by FLIM -- 4 Summary and Conclusions -- References -- Characterization of Drug Delivery Systems by Transmission Electron Microscopy -- 1 Introduction -- 2 Basics of Transmission Electron Microscopy -- 2.1 Suspensions, Solutions, Bacteria, Viruses, and Proteins -- 2.1.1 Cryo-TEM -- 2.2 Cells and Tissues -- 3 Cellular Uptake of Drug Delivery Vehicles -- 3.1 Single Particle Reconstruction and Electron Tomography -- 4 Conclusions -- References -- Part III: Target Specific Delivery -- Blood-Brain Barrier (BBB)-Crossing Strategies for Improved Treatment of CNS Disorders -- 1 Introduction -- 2 Invasive Approaches for Brain Drug Delivery -- 3 BBB Disruption for Brain Drug Delivery -- 4 Intranasal Drug Delivery -- 5 Receptor-Mediated Transcytosis (RMT) -- 6 Nanoparticle-Based Drug Delivery to the Brain -- 7 Viral Vector-Mediated Gene Delivery into CNS -- 8 ABC Drug Efflux Transporters and Inhibitors -- 9 Cell-/BBB-Penetrating Peptides -- 10 Cell-Mediated Drug Delivery -- 11 AI-Assisted Drug Design -- References. 327 $aNanomedicine - Immune System Interactions: Limitations and Opportunities for the Treatment of Cancer -- 1 Introduction -- 1.1 Passive Tumor Targeting -- 1.2 Active Targeting to Cancer Cells -- 1.3 Immune System Barriers to Tumor-Targeted Drug Delivery -- 1.4 Addressing and Exploiting Immune System Barriers -- 2 The Immune System in Cancer -- 2.1 Evasion of Immune Detection -- 2.2 Tumor Microenvironment (TME) Formation -- 3 A Brief History of Cancer Immunotherapy -- 4 History of Nanomedicine and the Immune System -- 5 The Interaction of Nanoparticles with Immune Cells -- 5.1 Macrophage Clearance of NP as a Bio-barrier -- 5.2 Macrophage Targeting -- 6 How Do Nanoparticles Enable Modulation of the Immune System in Cancer? -- 6.1 TME Targeting and Modulation -- 6.2 Targeting Lymph Nodes (LNs) and Antigen-Presenting Cells (APCs) -- 6.3 Bone Marrow Targeting -- 7 Identifying Optimal Nano-immunotherapy Regimens -- 8 Conclusion -- References -- Progress in Ocular Drug Delivery: Challenges and Constraints -- 1 Introduction -- 2 Anatomical and Physiological Challenges -- 2.1 Dynamic Barriers -- 2.2 Static Barriers -- 3 Formulation Constraints -- 3.1 Physicochemical Drug Properties -- 3.2 Excipient Limitations -- 4 Recent Progress in Ocular Drug Delivery -- 4.1 Novel Drug Delivery Systems for Anterior Segment Diseases -- 4.2 Novel Drug Delivery Systems for Posterior Segment Diseases -- 5 Future Directions in Ocular Drug Delivery -- References -- New Therapeutic Options in Pulmonal Diseases: Sphingolipids and Modulation of Sphingolipid Metabolism -- 1 Sphingolipid Homeostasis -- 2 Sphingolipid Dysregulation in Pulmonal Diseases -- 2.1 Sphingolipid Dysregulation in Cystic Fibrosis -- 2.2 Sphingolipid Dysregulation in COPD -- 2.3 Sphingolipid Dysregulation in Asthma -- 3 Therapeutic Options -- 3.1 Therapeutic Options in Cystic Fibrosis. 327 $a3.2 Therapeutic Options in COPD -- 3.3 Therapeutic Options in Asthma -- 4 Conclusion -- References -- Targeted Molecular Therapeutics for Pulmonary Diseases: Addressing the Need for Precise Drug Delivery -- 1 Introduction: Lung Anatomy, Major Diseases, and Options for Pulmonary Drug Delivery -- 2 Pulmonary Diseases: Current and Innovative Drug Delivery -- 3 Drug Targeting in Pulmonary Administration -- 3.1 Drug Targeting in Lung Cancer Therapies -- 3.2 Drug Targeting for Asthma -- 3.3 The Management of Respiratory Diseases Beyond Drug Targeting: Sphingolipids -- 4 Conclusion -- References -- RNA Delivery to Mitochondria -- 1 Mitochondria-Targeted RNA Delivery Therapeutic Strategies -- 2 Validation of Mitochondrial RNA Therapeutic Strategies by Direct Mitochondrial Transfection -- 2.1 Mitochondrial Delivery via Direct Mitochondrial Transfection -- 2.2 Mitochondrial Therapeutic RNA Delivery Using MITO-Porter System -- 3 Conclusions -- References -- Part IV: Concerted Actions - Thinking the Drug from the Beginning -- Advanced Formulation Approaches for Emerging Therapeutic Technologies -- 1 Introduction -- 2 Cell Therapies -- 2.1 Somatic-Cell Therapy Medicinal Products -- 2.2 Current Landscape of sCTMPs -- 2.2.1 Cell Source and Immunogenicity -- 2.2.2 Sterility -- 2.2.3 Manufacturing -- 2.2.4 Formulation, Storage, and Handling -- 2.2.5 Potency -- 2.3 Formulating Combined Products -- 3 Extracellular Vesicles -- 3.1 Clinical Applications of EVs -- 3.1.1 EVs as Diagnostic Tools -- 3.1.2 EVs as Therapeutic Tools -- 3.2 Regulatory Classification of EV-Based Therapeutics -- 3.3 Challenges to Clinical Translation of EV-Based Therapeutics -- 3.4 Application and Formulation of EVs -- 4 Gene Therapies -- 4.1 Background -- 4.2 DNA Delivery -- 4.2.1 Ex Vivo Cell Transduction -- 4.2.2 In Vivo Transgene Delivery -- 4.3 RNA Delivery -- 4.3.1 siRNA Delivery. 327 $a4.3.2 mRNA Delivery. 410 0$aHandbook of Experimental Pharmacology Series 676 $a615.6 700 $aSchäfer-Korting$b Monika$01735961 701 $aSchubert$b Ulrich S$01222399 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910847083403321 996 $aDrug Delivery and Targeting$94155439 997 $aUNINA