LEADER 02621oam 2200661 450 001 9910712010203321 005 20200318084040.0 035 $a(CKB)5470000002490004 035 $a(OCoLC)1097183401 035 $a(EXLCZ)995470000002490004 100 $a20190415d2019 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aModernizing Congressional Reporting Act of 2019 $ereport of the Committee on Homeland Security and Governmental Affairs, United States Senate, to accompany S. 196, to save taxpayer money and improve the efficiency and speed of intragovernmental correspondence, and for other purposes 210 1$aWashington :$cU.S. Government Publishing Office,$d2019. 215 $a1 online resource (ii, 5 pages) 225 1 $aReport / 116th Congress, 1st session, Senate ;$v116-32 300 $a"April 10, 2019." 320 $aIncludes bibliographical references. 517 $aModernizing Congressional Reporting Act of 2019 606 $aGovernment correspondence$zUnited States$xManagement 606 $aGovernment report writing$xTechnological innovations$zUnited States 606 $aAdministrative agencies$xRecords and correspondence$xLaw and legislation$zUnited States 606 $aWaste in government spending$zUnited States$xPrevention 606 $aAdministrative agencies$xRecords and correspondence$xLaw and legislation$2fast 606 $aGovernment correspondence$xManagement$2fast 606 $aWaste in government spending$xPrevention$2fast 607 $aUnited States$2fast 608 $aLegislative materials.$2fast 608 $aLegislative materials.$2lcgft 615 0$aGovernment correspondence$xManagement. 615 0$aGovernment report writing$xTechnological innovations 615 0$aAdministrative agencies$xRecords and correspondence$xLaw and legislation 615 0$aWaste in government spending$xPrevention. 615 7$aAdministrative agencies$xRecords and correspondence$xLaw and legislation. 615 7$aGovernment correspondence$xManagement. 615 7$aWaste in government spending$xPrevention. 801 0$bGPO 801 1$bGPO 801 2$bGPO 801 2$bSTF 801 2$bOCLCO 801 2$bCOO 801 2$bOCLCO 801 2$bUUM 801 2$bOCLCO 801 2$bOCLCF 801 2$bTXR 801 2$bOCLCO 801 2$bDWP 801 2$bGPO 906 $aBOOK 912 $a9910712010203321 996 $aModernizing Congressional Reporting Act of 2019$93440593 997 $aUNINA LEADER 11567nam 22008055 450 001 9910847083303321 005 20251225200621.0 010 $a981-9720-95-8 024 7 $a10.1007/978-981-97-2095-8 035 $a(CKB)31253152400041 035 $a(MiAaPQ)EBC31233410 035 $a(Au-PeEL)EBL31233410 035 $a(DE-He213)978-981-97-2095-8 035 $a(MiAaPQ)EBC31319801 035 $a(Au-PeEL)EBL31319801 035 $a(EXLCZ)9931253152400041 100 $a20240329d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComputational Visual Media $e12th International Conference, CVM 2024, Wellington, New Zealand, April 10?12, 2024, Proceedings, Part I /$fedited by Fang-Lue Zhang, Andrei Sharf 205 $a1st ed. 2024. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2024. 215 $a1 online resource (331 pages) 225 1 $aLecture Notes in Computer Science,$x1611-3349 ;$v14592 300 $aIncludes index. 311 08$a981-9720-94-X 327 $aIntro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- Reconstruction and Modelling -- PIFu for the Real World: A Self-supervised Framework to Reconstruct Dressed Human from Single-View Images -- 1 Introduction -- 2 Related Work -- 2.1 Singe-View Human Reconstruction -- 2.2 Single-View Depth Estimation -- 2.3 Self-supervised 3D Reconstruction -- 3 Method -- 3.1 Normal and Depth Estimation -- 3.2 SDF-Based Pixel-Aligned Implicit Function from Depth -- 3.3 Depth-Guided Self-supervised Learning -- 4 Experiments -- 4.1 Datasets, Metrics, and Implementation Details -- 4.2 Evaluations -- 4.3 Comparison with the State-of-the-Art -- 5 Conclusion -- References -- Sketchformer++: A Hierarchical Transformer Architecture for Vector Sketch Representation -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Data Representation -- 3.2 Hierarchical Transformer Architecture -- 3.3 Training -- 4 Experiments -- 4.1 Sketch Reconstruction -- 4.2 Sketch Recognition -- 4.3 Sketch Semantic Segmentation -- 4.4 Ablation Study -- 5 Conclusion -- References -- Leveraging Panoptic Prior for 3D Zero-Shot Semantic Understanding Within Language Embedded Radiance Fields -- 1 Introduction -- 2 Related Works -- 2.1 NeRF with Semantics -- 2.2 Panoptic Segmentation -- 2.3 Open-Vocabulary Object Detection -- 2.4 Zero-Shot Learning in 3D -- 2.5 Cross-Modal Knowledge Distillation -- 3 Method -- 3.1 Overview -- 3.2 Field Structure -- 3.3 Semantic Prior Extraction -- 3.4 CLIP Pyramid Reconstruction -- 3.5 Relevancy Evaluation Metric -- 4 Experiments -- 4.1 Settings -- 4.2 Qualitative Results -- 4.3 Ablation Study -- 5 Limitations -- 6 Conclusions -- References -- Multi-Scale Implicit Surface Reconstruction for Outdoor Scenes -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Multi-scale Rendering with SDF Representation -- 3.2 Dynamic Position Encoding. 327 $a3.3 Adaptive Sampling Strategy in Image Space -- 3.4 More Details -- 3.5 Loss Function -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Qualitative and Quantitative Comparisons -- 4.3 Ablation Study -- 5 Conclusion -- References -- Neural Radiance Fields for Dynamic View Synthesis Using Local Temporal Priors -- 1 Introduction -- 2 Related Work -- 3 Overview -- 4 Dynamic Scene Representation -- 5 Local Temporal NeRF -- 5.1 Local Temporal Module -- 5.2 Loss Functions -- 5.3 Implementation -- 6 Results -- 6.1 Quantitative Evaluation -- 6.2 Qualitative Evaluation -- 6.3 Ablation Study -- 6.4 Additional Comparisons -- 7 Limitations and Discussion -- 8 Conclusion -- References -- Point Cloud -- Point Cloud Segmentation with Guided Sampling and Continuous Interpolation -- 1 Introduction -- 2 Related Work -- 2.1 Point Cloud Learning -- 2.2 Point Cloud Sampling -- 3 Method -- 3.1 Motivation -- 3.2 Guided Sampling -- 3.3 Continuous Interpolation -- 4 Experiments -- 4.1 Experimental Setup -- 4.2 Signal Reconstruction -- 4.3 Semantic Segmentation -- 4.4 Object Part Segmentation -- 4.5 Ablation Study -- 5 Conclusion and Discussion -- References -- TopFormer: Topology-Aware Transformer for Point Cloud Registration -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Problem Definition -- 3.2 Local Feature Encoder -- 3.3 Topology-Aware Transformer -- 3.4 Sparse Point Matching -- 3.5 Dense Points Refinement -- 3.6 Loss Function -- 4 Experiments -- 4.1 Implementation -- 4.2 Indoor Scene: 3DMatch -- 4.3 Outdoor Scene Data: KITTI -- 4.4 Ablation Study -- 5 Conclusion -- References -- Adversarial Geometric Transformations of Point Clouds for Physical Attack -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Preliminaries -- 3.2 Adversarial Geometric Transformations -- 3.3 Optimization -- 4 Experiments -- 4.1 Dataset and Settings. 327 $a4.2 Evaluation on Adversarial Point Clouds -- 4.3 Evaluation on Shape and Physical Attack -- 4.4 Ablation Studies -- 5 Conclusions -- References -- SARNet: Semantic Augmented Registration of Large-Scale Urban Point Clouds -- 1 Introduction -- 2 Related Work -- 2.1 Traditional Feature-Based Registration -- 2.2 Learning-Based Registration -- 2.3 3D Point Feature Learning -- 3 Problem Statement and Overview -- 4 Methodology -- 4.1 Semantic-Based Farthest Point Sampling -- 4.2 Semantic-Augmented Feature Extraction -- 4.3 Semantic-Refined Transformation Estimation -- 4.4 Loss Functions -- 4.5 Implementation Details -- 5 Experimental Results -- 5.1 Experimental Setup -- 5.2 Evaluation Metrics -- 5.3 Comparisons -- 5.4 Ablation Study -- 5.5 Limitations -- 6 Conclusion and Future Work -- References -- Rendering and Animation -- FASSET: Frame Supersampling and Extrapolation Using Implicit Neural Representations of Rendering Contents -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Motivation and Overview -- 3.2 Implicit Neural Representations of Rendering Contents -- 3.3 Frame Feature Extractor -- 3.4 Network Training -- 4 Experiments -- 4.1 Dataset -- 4.2 Baselines and Settings -- 4.3 Analysis of Runtime Performance and Model Efficiency -- 4.4 Ablation Study -- 4.5 Limitation -- 5 Conclusion -- References -- MatTrans: Material Reflectance Property Estimation of Complex Objects with Transformer -- 1 Introduction -- 2 Related Works -- 3 Method -- 3.1 Initial Estimation Network -- 3.2 Refined Estimation Network -- 3.3 Transformer Encoder -- 3.4 Dataset -- 3.5 Training -- 4 Experiments -- 4.1 Ablation Experiment -- 4.2 Generalization to Real Data -- 4.3 Comparison Experiment -- 5 Conclusion -- References -- Improved Text-Driven Human Motion Generation via Out-of-Distribution Detection and Rectification -- 1 Introduction -- 2 Related Work. 327 $a3 The Proposed Method -- 4 Experiments -- 4.1 Dataset and Evaluation Metrics -- 4.2 Experiment Configuration and Training Details -- 4.3 Comparisons Between Different Text-Driven Human Motion Generation Methods -- 4.4 Comparison Between Different Outlier Detection Algorithms -- 4.5 Evaluation of Different Thresholds for Outlier Detection -- 4.6 Ablation Study -- 5 Conclusion -- References -- User Interactions -- BK-Editer: Body-Keeping Text-Conditioned Real Image Editing -- 1 Introduction -- 2 Related Work -- 3 Background -- 3.1 Diffusion Model Training -- 3.2 DDIM Sampling and Inversion -- 3.3 Text Condition and Classifier-Free Guidance -- 3.4 Stable Diffusion Model -- 3.5 Task Setting and the Body-Keeping Problem -- 4 Method -- 4.1 Tuning Stage for Finetuning Network -- 4.2 Inversion Stage for Obtaining BK-Attn Embeddings -- 4.3 Edit Stage with Body-Keeping -- 5 Experiments -- 5.1 Comparisons with Other Concurrent Works -- 5.2 User Study -- 5.3 Ablation Study -- 6 Limitations and Conclusion -- References -- Walking Telescope: Exploring the Zooming Effect in Expanding Detection Threshold Range for Translation Gain -- 1 Introduction -- 2 Related Work -- 2.1 Translation Gain Detection Threshold -- 2.2 Impact of FoV Change on Distance Perception -- 2.3 Impact of Magnified View on Distance Perception -- 3 Method -- 3.1 Translation Gain -- 3.2 Motivation -- 3.3 Verification Experiment -- 4 Main Experiment -- 4.1 Design and Hypotheses -- 4.2 Apparatus -- 4.3 Participants -- 4.4 Procedure -- 5 Results -- 5.1 Direction Thresholds -- 5.2 Simulator Sickness -- 6 Discussion -- 7 Limitation and Future Work -- 8 Conclusion -- References -- A U-Shaped Spatio-Temporal Transformer as Solver for Motion Capture -- 1 Introduction -- 2 Related Work -- 2.1 MoCap Data Clean-Up and Solving -- 2.2 Smoothness -- 2.3 Rotation Representations -- 2.4 Attention Model. 327 $a2.5 U-Net Architecture -- 3 Methodology -- 3.1 Problem Formulation -- 3.2 Overall Structure -- 4 Experiments and Evaluation -- 4.1 Experimental Settings -- 4.2 Quantitative and Qualitative Research -- 4.3 Ablation Study -- 5 Limitations and Future Work -- 6 Conclusion -- References -- ROSA-Net: Rotation-Robust Structure-Aware Network for Fine-Grained 3D Shape Retrieval -- 1 Introduction -- 2 Related Work -- 2.1 3D Shape Retrieval -- 2.2 Mesh-Based Representations -- 2.3 Rotation-Invariant Representations -- 3 ROSA-Net -- 3.1 Overview -- 3.2 Geometric Feature Representation -- 3.3 Part Geometry Attention Mechanism -- 3.4 Structural Information Representation -- 3.5 Geometry-Structure Attention Mechanism -- 3.6 Global Feature Encoding -- 3.7 Losses -- 3.8 Model Training and Shape Retrieval -- 4 Experimental Results -- 4.1 ROSA-Dataset -- 4.2 Fine-Grained Shape Retrieval -- 4.3 Weighted Features of Parts by Part-Geo Attention -- 4.4 Weighted Features by Geo-Struct Attention -- 4.5 Using Other Data Representation -- 4.6 Ablation Study -- 5 Conclusion -- References -- Author Index. 330 $aThis book constitutes the refereed proceedings of CVM 2024, the 12th International Conference on Computational Visual Media, held in Wellington, New Zealand, in April 2024. The 34 full papers were carefully reviewed and selected from 212 submissions. The papers are organized in topical sections as follows: Part I: Reconstruction and Modelling, Point Cloud, Rendering and Animation, User Interations. Part II: Facial Images, Image Generation and Enhancement, Image Understanding, Stylization, Vision Meets Graphics. 410 0$aLecture Notes in Computer Science,$x1611-3349 ;$v14592 606 $aComputer vision 606 $aPattern recognition systems 606 $aApplication software 606 $aComputer graphics 606 $aArtificial intelligence 606 $aAlgorithms 606 $aComputer Vision 606 $aAutomated Pattern Recognition 606 $aComputer and Information Systems Applications 606 $aComputer Graphics 606 $aArtificial Intelligence 606 $aAlgorithms 615 0$aComputer vision. 615 0$aPattern recognition systems. 615 0$aApplication software. 615 0$aComputer graphics. 615 0$aArtificial intelligence. 615 0$aAlgorithms. 615 14$aComputer Vision. 615 24$aAutomated Pattern Recognition. 615 24$aComputer and Information Systems Applications. 615 24$aComputer Graphics. 615 24$aArtificial Intelligence. 615 24$aAlgorithms. 676 $a006.6 702 $aZhang$b Fang-Lue 702 $aSharf$b Andrei 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910847083303321 996 $aComputational visual media$92120936 997 $aUNINA