LEADER 01166nam0-2200337 --450 001 9910842996303321 005 20240409113511.0 010 $a978-88-8474-671-9 100 $a20240409d2023----kmuy0itay5050 ba 101 0 $aita 102 $aIT 105 $aa 001yy 200 1 $aTibet occupato$ela storia, i diritti, i doveri dei nostri governi$fMichael van Walt van Praag e Miek Boltjes$gtraduzione e cura di Enrica Garzilli 210 $a[Rimini]$cIl cerchio$d2023 215 $a297 p.$cill.$d24 cm 225 1 $aOrientalia 300 $aSul front.: con il patrocinio di Unione Buddhista Italiana 300 $aIn cop.: "Tibet 1987, Il Potala visto dal Jokhang", foto di Claudio Cardelli 320 $aContiene bibl. (pp. 275-293) 610 0 $aTibet$aStoria$aOccupazione cinese$aSec. 20. 676 $a951.5$v19$zita 700 1$aWalt van Praag,$bMichael C. : van$0501383 701 1$aBoltjes,$bMiek$01733985 702 1$aGarzilli,$bEnrica 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910842996303321 952 $aSTO 319$b1569/2024$fFSPBC 959 $aFSPBC 996 $aTibet occupato$94150111 997 $aUNINA LEADER 05144nam 2200589Ia 450 001 9911019597603321 005 20200520144314.0 010 $a1-118-28087-3 010 $a1-280-59913-8 010 $a9786613628961 010 $a1-118-28086-5 035 $a(CKB)2670000000170084 035 $a(EBL)881735 035 $a(OCoLC)793103985 035 $a(MiAaPQ)EBC881735 035 $a(PPN)169040755 035 $a(EXLCZ)992670000000170084 100 $a20111129d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aFundamentals of geobiology /$fedited by Andrew H. Knoll, Don E. Canfield & Kurt O. Konhauser 210 $aChichester, West Sussex ;$aHoboken, NJ $cJohn Wiley & Sons$d2012 215 $a1 online resource (481 p.) 300 $aDescription based upon print version of record. 311 $a1-118-28081-4 311 $a1-4051-8752-2 320 $aIncludes bibliographical references and index. 327 $aFUNDAMENTALS OF GEOBIOLOGY; Contents; Contributors; 1. What is Geobiology?; 1.1 Introduction; 1.2 Life interacting with the Earth; 1.3 Pattern and process in geobiology; 1.4 New horizons in geobiology; References; 2. The Global Carbon Cycle: Biological Processes; 2.1 Introduction; 2.2 A brief primer on redox reactions; 2.3 Carbon as a substrate for biological reactions; 2.4 The evolution of photosynthesis; 2.5 The evolution of oxygenic phototrophs; 2.6 Net primary production; 2.7 What limits NPP on land and in the ocean?; 2.8 Is NPP in balance with respiration?; 2.9 Conclusions and extensions 327 $aReferences3. The Global Carbon Cycle: Geological Processes; 3.1 Introduction; 3.2 Organic carbon cycling; 3.3 Carbonate cycling; 3.4 Mantle degassing; 3.5 Metamorphism; 3.6 Silicate weathering; 3.7 Feedbacks; 3.8 Balancing the geological carbon cycle; 3.9 Evolution of the geological carbon cycle through Earth's history: proxies and models; 3.10 The geological C cycle through time; 3.11 Limitations and perspectives; References; 4. The Global Nitrogen Cycle; 4.1 Introduction; 4.2 Geological nitrogen cycle; 4.3 Components of the global nitrogen cycle; 4.4 Nitrogen redox chemistry 327 $a4.5 Biological reactions of the nitrogen cycle4.6 Atmospheric nitrogen chemistry; 4.7 Summary and areas for future research; References; 5. The Global Sulfur Cycle; 5.1 Introduction; 5.2 The global sulfur cycle from two perspectives; 5.3 The evolution of S metabolisms; 5.4 The interaction of S with other biogeochemical cycles; 5.5 The evolution of the S cycle; 5.6 Closing remarks; Acknowledgements; References; 6. The Global Iron Cycle; 6.1 Overview; 6.2 The inorganic geochemistry of iron: redox and reservoirs; 6.3 Iron in modern biology and biogeochemical cycles; 6.4 Iron through time 327 $a6.5 SummaryAcknowledgements; References; 7. The Global Oxygen Cycle; 7.1 Introduction; 7.2 The chemistry and biochemistry of oxygen; 7.3 The concept of redox balance; 7.4 The modern O2 cycle; 7.5 Cycling of O2 and H2 on the early Earth; 7.6 Synthesis: speculations about the timing and cause of the rise of atmospheric O2; References; 8. Bacterial Biomineralization; 8.1 Introduction; 8.2 Mineral nucleation and growth; 8.3 How bacteria facilitate biomineralization; 8.4 Iron oxyhydroxides; 8.5 Calcium carbonates; Acknowledgements; References; 9. Mineral-Organic-Microbe Interfacial Chemistry 327 $a9.1 Introduction9.2 The mineral surface (and mineral-bio interface) and techniques for its study; 9.3 Mineral-organic-microbe interfacial processes: some key examples; Acknowledgements; References; 10. Eukaryotic Skeletal Formation; 10.1 Introduction; 10.2 Mineralization by unicellular organisms; 10.3 Mineralization by multicellular organisms; 10.4 A brief history of skeletons; 10.5 Summary; Acknowledgements; References; 11. Plants and Animals as Geobiological Agents; 11.1 Introduction; 11.2 Land plants as geobiological agents; 11.3 Animals as geobiological agents; 11.4 Conclusions 327 $aAcknowledgements 330 $a2012 PROSE Award, Earth Science: Honorable Mention For more than fifty years scientists have been concerned with the interrelationships of Earth and life. Over the past decade, however, geobiology, the name given to this interdisciplinary endeavour, has emerged as an exciting and rapidly expanding field, fuelled by advances in molecular phylogeny, a new microbial ecology made possible by the molecular revolution, increasingly sophisticated new techniques for imaging and determining chemical compositions of solids on nanometer scales, the development of non-traditional stable 606 $aGeobiology 606 $aBiosphere 615 0$aGeobiology. 615 0$aBiosphere. 676 $a577 701 $aKnoll$b Andrew H$0625544 701 $aCanfield$b Donald E$01839904 701 $aKonhauser$b Kurt$0312806 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019597603321 996 $aFundamentals of geobiology$94419302 997 $aUNINA