LEADER 10663nam 22004453 450 001 9910842400303321 005 20240308080228.0 010 $a3-527-83938-0 010 $a3-527-83936-4 010 $a3-527-83937-2 035 $a(MiAaPQ)EBC31201270 035 $a(Au-PeEL)EBL31201270 035 $a(EXLCZ)9930776899000041 100 $a20240308d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMicro-Mesoporous Metallosilicates $eSynthesis, Characterization, and Catalytic Applications 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$dİ2024. 215 $a1 online resource (493 pages) 311 $a3-527-35094-2 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Synthesis of Titanosilicates -- 1.1 Introduction -- 1.2 Synthesis of Medium?Pore Titanosilicates -- 1.2.1 TS?1 Synthesis -- 1.2.2 Ti?MWW Synthesis -- 1.2.3 TS?2 Synthesis -- 1.2.4 Synthesis of Other Medium?Pore Titanosilicates -- 1.3 Synthesis of Large?Pore Titanosilicates -- 1.3.1 Ti?Beta Synthesis -- 1.3.2 Ti?MOR Synthesis -- 1.3.3 Ti?MSE Synthesis -- 1.3.4 Synthesis of Other Large?Pore Titanosilicates -- 1.4 Synthesis of Extra?Large?Pore Titanosilicates -- 1.5 Synthesis of Mesoporous Titanosilicates -- 1.6 Synthesis of ETSs -- 1.7 Conclusions -- References -- Chapter 2 Layered Heteroatom?Containing Zeolites -- 2.1 Introduction -- 2.2 Traditional Layered Heteroatom?Containing Zeolites -- 2.2.1 Heteroatom?Containing MWW?Type Layered Zeolites and Their Derivative Zeolitic Materials -- 2.2.2 Heteroatom?Containing Layered Zeolites Built from fer?Layers -- 2.3 Novel Layered Heteroatom?Containing Zeolites -- 2.3.1 Heteroatom?Containing MFI?Type Layered Zeolites -- 2.3.2 Germanosilicate?Derived Heteroatom?Containing Zeolites -- 2.4 Conclusions -- Acknowledgments -- References -- Chapter 3 Synthesis and Catalytic Applications of Sn? and Zr?Zeolites -- 3.1 Introduction -- 3.2 Synthesis of Sn? and Zr?Zeolites -- 3.2.1 Bottom?up Approaches -- 3.2.1.1 Hydrothermal Synthesis -- 3.2.1.2 Dry?Gel Conversion Methods -- 3.2.1.3 Interzeolite Transformation -- 3.2.1.4 Structural Reconstruction Strategy -- 3.2.2 Top?Down Approaches -- 3.2.2.1 Direct Metalation -- 3.2.2.2 Demetallation-Metalation -- 3.3 General Remarks -- 3.4 Catalytic Applications of Sn? and Zr?Zeolites -- 3.4.1 Redox Catalysis -- 3.4.1.1 Baeyer-Villiger Oxidation -- 3.4.1.2 Meerwein-Ponndorf-Verley Redox -- 3.4.2 Lewis Acid Catalysis -- 3.4.2.1 Ring Opening of Epoxides -- 3.4.2.2 Aldol Reaction -- 3.4.2.3 Propane Dehydrogenation. 327 $a3.4.3 Biomass Conversion -- 3.4.3.1 Sugar Isomerization -- 3.4.3.2 5?(Hydroxymethyl)Furfural (HMF) Synthesis -- 3.4.3.3 Synthesis of Lactic Acid or Alkyl Lactates -- 3.4.3.4 ??Valerolactone Synthesis -- 3.5 General Remarks -- References -- Chapter 4 Synthesis of Germanosilicates -- 4.1 Introduction -- 4.1.1 General Property of Ge/Si Oxides -- 4.1.2 Germanosilicate Glass -- 4.2 Isomorphous Substitution in Germanosilicates -- 4.2.1 Isomorphous Substitution Si in Germanate -- 4.2.2 Isomorphous Substitution Ge in Silicates -- 4.3 Inorganic Structure?Directing Effects -- 4.3.1 Structure?Directing Effects of Ge -- 4.3.2 Structure?Directing Effects of F? -- 4.4 Organic Structure?Directing Agents in Germanosilicate Synthesis -- 4.4.1 Organic Structure?Directing Agent Types and Revolutions -- 4.4.2 Two Important Families of OSDA -- 4.5 Structure Diversity of Germanosilicates/Silicogermanates -- 4.5.1 Relationship Between Composition and Structure -- 4.5.2 Pore Opening -- 4.6 Possibility of Elimination of Ge and Catalytic Research of Germanosilicates -- 4.6.1 The Price Concern of Ge -- 4.6.2 Removal of Ge in Zeolite Synthesis -- 4.6.3 Removal of Ge with Post?synthesis -- 4.6.4 Catalytic Research of Germanosilicates -- 4.7 Conclusions and Outlook -- References -- Chapter 5 Structural Modifications on Germanosilicates -- 5.1 Introduction -- 5.2 Germanosilicates to Layered Precursors -- 5.2.1 UTL to IPC?1P -- 5.3 ADOR Strategy for Developing New Zeolite Structures -- 5.3.1 Assembly -- 5.3.2 Disassembly -- 5.3.3 Organization -- 5.3.4 Reassembly -- 5.3.5 Liquid?phase ADOR -- 5.3.5.1 The UTL Case -- 5.3.5.2 The CIT?13 Case -- 5.3.5.3 The UOV Case -- 5.3.5.4 The IWW Case -- 5.3.6 Vapor?phase ADOR -- 5.3.7 Reductive Degermanation -- 5.3.8 Solid?state Transformations -- 5.4 Structure Stabilization -- 5.4.1 Degermanation -- 5.4.2 Functionalization With Catalytic Sites. 327 $a5.4.3 Slow Disassembly -- 5.4.4 Reverse ADOR -- 5.5 Germanosilicate?Derived Catalysts -- 5.5.1 Summary and Perspectives -- Acknowledgements -- References -- Chapter 6 Heteroatom?Containing Dendritic Mesoporous Silica Nanoparticles -- 6.1 Introduction -- 6.2 Main Synthetic Methods and Formation Mechanism of Pure Silica?Based Dendritic Mesoporous Silica Nanoparticles (DMSNs) -- 6.2.1 Main Synthetic Methods of Dendritic Mesoporous Silica Nanoparticles (DMSNs) -- 6.2.2 Unified Formation Mechanism of Dendritic Mesoporous Silica Nanoparticles -- 6.3 Synthesis of Heteroatom?Containing DMSNs and Their Catalytic Applications -- 6.3.1 One?Pot Doping Strategy for DMSNs Containing Heteroatoms (Al/Ti/V/Sn/Mn/Fe/Co) -- 6.3.2 Post?grafting for Surface Metal Complexes -- 6.3.3 Loading of Metal and/or Metal Oxide Nanoparticles Within the Nanopores -- 6.4 Summary and Perspectives -- Acknowledgments -- References -- Chapter 7 Chemical Post?Modifications of Titanosilicates -- 7.1 Introduction -- 7.2 Diffusion and Adsorption/Desorption -- 7.2.1 Hierarchical Titanosilicates -- 7.2.2 Surface Hydrophilicity and Hydrophobicity -- 7.3 Surface Reaction -- 7.3.1 Ti Active Sites Content -- 7.3.2 Ti Active Sites Distribution -- 7.3.3 Ti Active Sites Properties -- 7.3.3.1 Electrophilicity of Ti Active Sites -- 7.3.3.2 Coordinate State of Ti Active Sites -- 7.3.3.3 Adjacent Silanol Groups of Ti Active Sites -- 7.4 Solvent Effect -- 7.4.1 Effect of Solvent on Diffusion -- 7.4.2 Effect of Solvent on Adsorption/Desorption -- 7.4.3 Effect of Solvent on Surface Reactions -- 7.4.3.1 Effect on the Formation on Ti O O H -- 7.4.3.2 Effect on the Stability of Ti O O H -- 7.4.3.3 Effect on the Transfer of Ti O O H -- 7.5 Conclusions and Prospects -- References -- Chapter 8 Spectroscopic Characterization of Heteroatom?Containing Zeolites -- 8.1 X?Ray Technique. 327 $a8.1.1 XRD Determination of Framework Structure and Heteroatoms in Zeolites -- 8.1.2 XAS Characterization of Metals in Zeolite -- 8.1.3 XPS Analysis of the Chemical State of Metal Species -- 8.2 Ultraviolet-Visible?Near Infrared (UV-VIS-NIR) Spectroscopy -- 8.2.1 UV-VIS-NIR Characterization of Framework and Non?Framework Metal Species -- 8.2.2 UV-VIS-NIR Characterization of Metal Species on Ion Exchange Sites of Zeolites -- 8.3 Raman Spectroscopy -- 8.3.1 Raman Study of Synthesis Mechanism and Assembly of Metal?Zeolites -- 8.3.2 Raman Characterization of Active Metal?Oxygen Species in Zeolites -- 8.4 Solid?State NMR Spectroscopy -- 8.4.1 Solid?State NMR Characterization of Metal Elements in Zeolites -- 8.4.2 Solid?State Correlation NMR Measurement of Active Site Proximity and Host-Guest Interactions -- 8.4.3 In Situ Solid?State NMR for the Study of Reaction Mechanisms -- 8.5 Conclusions -- Acknowledgments -- References -- Chapter 9 Theoretical Calculations of Heteroatom Substituted Zeolites -- 9.1 Introduction -- 9.2 Ti?Doped Zeolites -- 9.2.1 Preferred Tetrahedral (T) Sites for Substitution -- 9.2.2 Lewis Acid -- 9.2.3 Active Site with H2O2 -- 9.2.4 Reaction Mechanism -- 9.2.4.1 Epoxidation of Olefins -- 9.2.4.2 Ammoximation and Oxidation of Cyclohexanone -- 9.2.4.3 Oxidation Desulfurization Reactions -- 9.3 Sn?Doped Zeolites -- 9.3.1 Preferred Substitution T Sites and Acidity -- 9.3.2 Reaction Mechanism -- 9.3.2.1 Glucose Isomerization to Fructose and Epimerization to Mannose -- 9.3.3 Other Catalytic Reactions -- 9.4 Other Metal?Substituted Zeolites -- 9.5 Summary and Outlook -- Acknowledgments -- References -- Chapter 10 Catalytic Ammoximation of Ketones or Aldehydes Using Titanosilicates -- 10.1 Introduction -- 10.2 The Development of Titanosilicates in Ammoximation of Ketones and Aldehydes. 327 $a10.3 Ammoximation Mechanism and Product Distributions of Representative Ketones and Aldehydes -- 10.3.1 Titanosilicate?Catalyzed Ammoximation Mechanism -- 10.3.2 Product Distributions for Ammoximation of Representative Carbonyl Compounds -- 10.4 Enhancing Ammoximation Performances in Titanosilicate/H2O2 System -- 10.4.1 Improvement of Catalytic Ammoximation Activity -- 10.4.1.1 Regulation of Ti Active Sites -- 10.4.1.2 Enhancement of Diffusion Properties -- 10.4.1.3 Improvement of Hydrophobicity -- 10.4.1.4 Regulation of Acid Sites -- 10.4.2 Improvement of Catalytic Ammoximation Stability -- 10.5 Ketone Ammoximation Technology for Industrial Processes -- 10.6 Titanosilicate?Based Bifunctional Catalysts for Process Intensified or Tandem Ammoximation Reactions -- 10.7 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 11 Titanosilicate?Based Alkene Epoxidation Catalysis -- 11.1 Introduction -- 11.2 Reaction Chemistry of Alkene Epoxidation Catalyzed by Titanosilicate Zeolites -- 11.3 Typical Alkene Epoxidation Cases -- 11.3.1 Propylene Epoxidation for PO Production -- 11.3.2 Propylene Chloride Epoxidation -- 11.3.3 Ethylene Epoxidation to EO, EG, and Ethers -- 11.4 Industrial Propylene Epoxidation Techniques and Processes -- 11.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 12 Propylene Epoxidation with Cumene Hydroperoxide/Titanosilicates -- 12.1 Introduction -- 12.2 Traditional Route for PO Production (Chlorohydrin Process) -- 12.3 Co?production Route for PO Production (PO/TBA and PO/SM Processes) -- 12.4 PO?Only Production Routes (HPPO and CMHPPO Routes) -- 12.5 Catalyst Design for PO?Only Routes -- 12.5.1 Mesoporous Ti?Doped Catalysts for CMHPPO Process -- 12.5.2 Hierarchical Titanosilicates for CMHPPO Process -- 12.6 Industrial CMHPPO Process -- 12.7 Conclusions and Outlooks -- References. 327 $aChapter 13 Hydroxylation of Benzene and Phenol on Zeolite Catalysts. 700 $aWu$b Peng$01058437 701 $aXu$b Hao$0668034 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910842400303321 996 $aMicro-Mesoporous Metallosilicates$94145659 997 $aUNINA