LEADER 12031nam 22006015 450 001 9910842296903321 005 20240904004821.0 010 $a3-031-53503-0 024 7 $a10.1007/978-3-031-53503-1 035 $a(CKB)30597442100041 035 $a(MiAaPQ)EBC31200906 035 $a(Au-PeEL)EBL31200906 035 $a(DE-He213)978-3-031-53503-1 035 $a(EXLCZ)9930597442100041 100 $a20240228d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComplex Networks & Their Applications XII $eProceedings of The Twelfth International Conference on Complex Networks and their Applications: COMPLEX NETWORKS 2023, Volume 4 /$fedited by Hocine Cherifi, Luis M. Rocha, Chantal Cherifi, Murat Donduran 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (490 pages) 225 1 $aStudies in Computational Intelligence,$x1860-9503 ;$v1144 311 $a3-031-53502-2 327 $aIntro -- Preface -- Organization and Committees -- Contents -- Higher-Order Interactions -- Analyzing Temporal Influence of Burst Vertices in Growing Social Simplicial Complexes -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 4 Proposed Method -- 4.1 Burst Vertices -- 4.2 Proposed Model -- 4.3 Learning Method -- 5 Experiments -- 5.1 Datasets -- 5.2 Empirical Data Analysis -- 5.3 Evaluation of Proposed Model -- 5.4 Analysis of Temporal Influence -- 6 Conclusion -- References -- An Analytical Approximation of Simplicial Complex Distributions in Communication Networks -- 1 Background -- 2 Methodology -- 2.1 Scale-Free Network Growth with Triad Formation -- 2.2 Adjacency Factor -- 3 Experiments -- 4 Conclusion -- References -- A Dynamic Fitting Method for Hybrid Time-Delayed and Uncertain Internally-Coupled Complex Networks: From Kuramoto Model to Neural Mass Model -- 1 Introduction -- 2 Method -- 2.1 Real Human Brain Data Structure -- 2.2 Extended Neural Mass Model with Coupling Strength and Time Delay -- 2.3 Extended Kuramoto Model with Coupling Strength and Time Delay -- 2.4 Dynamic Fitting for Two Extended Model -- 3 Results -- 4 Discussion -- References -- Human Behavior -- An Adaptive Network Model for Learning and Bonding During a Varying in Rhythm Synchronous Joint Action -- 1 Introduction -- 2 The Self-modeling Network Modeling Approach Used -- 3 Design of the Adaptive Network Model -- 4 Simulation Results -- 5 Model Evaluation and Discussion -- References -- An Adaptive Network Model for the Emergence of Group Synchrony and Behavioral Adaptivity for Group Bonding -- 1 Introduction -- 2 Background Research -- 3 Network Representations for Adaptive Dynamical Systems -- 4 A Network Model for Group Synchrony and Group Bonding -- 5 Simulation Results -- 6 Discussion -- References. 327 $aToo Overloaded to Use: An Adaptive Network Model of Information Overload During Smartphone App Usage -- 1 Introduction -- 2 Background -- 3 Network-Oriented Modeling -- 4 Adaptive Network Model of Information Overload -- 5 Simulation Results -- 6 Discussion -- References -- Consumer Behaviour Timewise Dependencies Investigation by Means of Transition Graph -- 1 Introduction -- 2 Related Works -- 3 Data Description -- 4 Transition Graph Construction and Applying -- 5 Timewise Dependencies Investigation -- 6 Conclusion and Future Work -- References -- An Adaptive Network Model for a Double Bias Perspective on Learning from Mistakes within Organizations -- 1 Introduction -- 2 Modeling Adaptive Networks as Self-modeling Networks -- 3 Setup of the Computational Analysis -- 4 Simulation Experiments -- 5 Discussion -- 6 Conclusion -- References -- Identification of Writing Preferences in Wikipedia -- 1 Introduction -- 1.1 Writing Preferences in Wikipedia -- 1.2 Genre and Prototype Theory -- 1.3 Prototype and Writing Preferences -- 2 Method -- 2.1 Dataset -- 2.2 Preprocessing of the Dataset -- 2.3 Prototype Identification -- 2.4 The Whole Procedure -- 2.5 Prototype Analysis -- 2.6 Implementation Details -- 3 Results -- 4 Discussion -- References -- Influence of Virtual Tipping and Collection Rate in Social Live Streaming Services -- 1 Introduction -- 2 Related Work -- 3 Proposed Model and Methodology -- 3.1 Overview -- 3.2 SNS-Norms Game with Tip and Quality -- 3.3 Game Process -- 3.4 Evolution of Behavioral Strategies for Individual Agents -- 4 Experiments and Discussion -- 4.1 Experimental Setting -- 4.2 Strategies Under Various Collection Rates -- 4.3 Agents' Utility and Platform's Gain -- 5 Conclusion -- References -- Information Spreading in Social Media -- Algorithmic Amplification of Politics and Engagement Maximization on Social Media. 327 $a1 Introduction -- 2 Methods -- 2.1 Engagement Predictive Models -- 2.2 Timelines Simulation -- 2.3 Metrics -- 3 Results -- 3.1 Relative Amplification -- 3.2 Audience Diversity -- 4 Discussion -- References -- Interpretable Cross-Platform Coordination Detection on Social Networks -- 1 Introduction -- 2 Related Work -- 3 Dataset -- 4 Method -- 4.1 Multi-layer Network Community Detection -- 4.2 Cross-Platform Community Alignment -- 4.3 Overview of the Framework -- 5 Results -- 6 Discussion -- References -- Time-Dynamics of (Mis)Information Spread on Social Networks: A COVID-19 Case Study -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Data Collection and Dataset Description -- 3.2 Longitudinal Analysis Methods -- 4 Longitudinal Analysis -- 4.1 Tweet Intensity -- 4.2 Mis(information) Longevity in Networks -- 4.3 Short Discussion on Tweet Labels -- 5 Conclusion and Future Work -- References -- A Comparative Analysis of Information Cascade Prediction Using Dynamic Heterogeneous and Homogeneous Graphs -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Problem Definition -- 3.2 Homogeneous Graph Neural Network Model -- 3.3 CasSeq-Model -- 3.4 HetSAGE Model -- 3.5 HetSeq-Model -- 4 Experimental Setup -- 5 Results -- 5.1 Temporal Sequence in Heterogeneous vs. Homogeneous Graph -- 5.2 Edge Selection in Heterogeneous Networks -- 6 Conclusions -- References -- A Tale of Two Cities: Information Diffusion During Environmental Crises in Flint, Michigan and East Palestine, Ohio -- 1 Context and Motivation -- 2 The Informational Nature of Environmental Crises -- 2.1 Environmental Crises in Flint, MI and East Palestine, OH -- 2.2 The Complex Nature of Information Diffusion -- 3 Research Methods -- 3.1 Information Diffusion Model -- 3.2 Simulating Information Spread to Mimic Observed Crises -- 4 Results and Findings. 327 $a4.1 Patterns Simulate East Palestine Better Than Flint -- 4.2 Reproduction of Dynamics in the Case of Flint -- 5 Discussion -- 6 Conclusion -- References -- Multilingual Hate Speech Detection Using Semi-supervised Generative Adversarial Network -- 1 Introduction -- 2 Literature Survey -- 2.1 GAN for Hate Speech Detection -- 2.2 GAN-BERT -- 2.3 GAN-BERT for Hate Speech Detection -- 3 Methodology -- 3.1 Semi-supervised Generative Adversarial Network: SS-GAN -- 3.2 SS-GAN-mBERT -- 4 Experiments and Results -- 4.1 Dataset -- 4.2 Experiments and Analysis -- 5 Discussions and Future Directions -- 5.1 Discussions -- 5.2 Future Directions -- 6 Conclusion -- References -- Exploring the Power of Weak Ties on Serendipity in Recommender Systems -- 1 Introduction -- 2 Background and Related Work -- 2.1 Serendipity in Recommenders -- 2.2 Recommendations and Social Network Connections -- 3 Community-Based Mechanism -- 4 Results and Discussions -- 5 Conclusions and Future Work -- References -- Infrastructure Networks -- An Interaction-Dependent Model for Probabilistic Cascading Failure -- 1 Introduction -- 2 CASCADE Model and Interaction Graph -- 2.1 CASCADE Model -- 2.2 Interaction Graph -- 3 Interaction-CASCADE Model -- 4 Numerical Studies -- 4.1 Interaction Independent Load Distribution -- 4.2 Interaction-Dependent Load Distribution -- 5 Conclusion and Future Works -- References -- Detecting Critical Streets in Road Networks Based on Topological Representation -- 1 Introduction -- 2 Related Works -- 3 Preliminaries -- 4 Detection Method -- 4.1 Problem Formulation -- 4.2 Critical Vertices Detection Based on High-Salience Skeleton -- 4.3 Baseline Methods -- 5 Experiments -- 5.1 Datasets and Settings -- 5.2 Results of Street Score Distribution -- 5.3 Comparison Results of Critical Street Detection Methods -- 6 Conclusion -- References. 327 $aTransport Resilience and Adaptation to Climate Impacts - A Case Study on Agricultural Transport in Brazil -- 1 Introduction -- 2 Methods -- 3 Results -- 4 Conclusion -- References -- Incremental Versus Optimal Design of Water Distribution Networks - The Case of Tree Topologies -- 1 Introduction -- 2 Related Work -- 3 Framework and Metrics -- 4 Tree Networks -- 4.1 Random Expansion -- 4.2 Gradual Expansion -- 5 Case Study -- 6 Conclusion, Limitations and Future Work -- References -- Social Networks -- Retweeting Twitter Hate Speech After Musk Acquisition -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Hate Group Selection -- 3.2 Data Collection and Augmentation -- 3.3 The Filtering of Bot Accounts -- 3.4 Retweet Networks -- 3.5 Configuration Retweet Network Model -- 3.6 T-Test and P-Values -- 4 Results -- 4.1 Comparing the 2021 and 2022 Networks -- 4.2 Retweeters of Elon Musk and Hate Groups -- 5 Discussion -- 6 Conclusion -- References -- Unveiling the Privacy Risk: A Trade-Off Between User Behavior and Information Propagation in Social Media -- 1 Introduction -- 2 Related Work -- 3 Privacy Risk Assessment of Users -- 3.1 The Twitter Dataset and the Labeling Process -- 3.2 Unsupervised Privacy Risk Assessment -- 3.3 Supvervised Privacy Risk Assessment -- 4 Experimental Evaluation -- 4.1 Technical Details and Evaluation Metrics -- 4.2 Results: Unsupervised Privacy Risk Assessment -- 4.3 Results: Supervised Privacy Risk Assessment -- 4.4 Results: Discussion -- 5 Conclusions and Further Research -- References -- An Extended Uniform Placement of Alters on Spherical Surface (U-PASS) Method for Visualizing General Networks -- 1 Introduction -- 2 Notations and Definitions -- 3 Method -- 3.1 Three-Stage Optimization -- 3.2 Spherical Discrepancy -- 4 Performance Comparison -- 5 Real Data Example -- 6 Conclusion -- References. 327 $aThe Friendship Paradox and Social Network Participation. 330 $aThis book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the XII International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2023). The carefully selected papers cover a wide range of theoretical topics such as network embedding and network geometry; community structure, network dynamics; diffusion, epidemics and spreading processes; machine learning and graph neural networks as well as all the main network applications, including social and political networks; networks in finance and economics; biological networks and technological networks. 410 0$aStudies in Computational Intelligence,$x1860-9503 ;$v1144 606 $aDynamics 606 $aNonlinear theories 606 $aComputational intelligence 606 $aApplied Dynamical Systems 606 $aComputational Intelligence 615 0$aDynamics. 615 0$aNonlinear theories. 615 0$aComputational intelligence. 615 14$aApplied Dynamical Systems. 615 24$aComputational Intelligence. 676 $a004.6 702 $aCherifi$b Hocine 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910842296903321 996 $aComplex Networks & Their Applications XII$94243998 997 $aUNINA