LEADER 04154nam 22006615 450 001 9910842294003321 005 20250807132337.0 010 $a9783031490354 024 7 $a10.1007/978-3-031-49035-4 035 $a(CKB)30597568800041 035 $a(MiAaPQ)EBC31201089 035 $a(Au-PeEL)EBL31201089 035 $a(DE-He213)978-3-031-49035-4 035 $a(EXLCZ)9930597568800041 100 $a20240227d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMultidimensional Periodic Schrödinger Operator $ePerturbation Theories for High Energy Regions and Their Applications /$fby Oktay Veliev 205 $a3rd ed. 2024. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2024. 215 $a1 online resource (420 pages) 225 1 $aSpringer Tracts in Modern Physics,$x1615-0430 ;$v291 311 08$a9783031490347 320 $aIncludes bibliographical references and index. 327 $aPreliminary Facts -- From One-dimensional to Multidimensional -- Asymptotic Formulas for the Bloch Eigenvalues and Bloch Functions -- Constructive Determination of the Spectral Invariants -- Periodic Potential from the Spectral Invariants -- Conclusions and Some Generalization. 330 $aThis book describes the direct and inverse problems of the multidimensional Schrödinger operator with a periodic potential, a topic that is especially important in perturbation theory, constructive determination of spectral invariants and finding the periodic potential from the given Bloch eigenvalues. It provides a detailed derivation of the asymptotic formulas for Bloch eigenvalues and Bloch functions in arbitrary dimensions while constructing and estimating the measure of the iso-energetic surfaces in the high-energy regime. Moreover, it presents a unique method proving the validity of the Bethe?Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed, it determines the spectral invariants of the multidimensional operator from the given Bloch eigenvalues. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential, making it possible to determine the potential constructively using Bloch eigenvalues as input data. Lastly, the book presents an algorithm for the unique determination of the potential. This updated and significantly expanded third edition features an extension of this framework to all dimensions, offering a now complete theory of self-adjoint Schrödinger operators within periodic potentials. Drawing from recent advancements in mathematical analysis, this edition delves even deeper into the intricacies of the subject. It explores the connections between the multidimensional Schrödinger operator, periodic potentials, and other fundamental areas of mathematical physics. The book's comprehensive approach equips both students and researchers with the tools to tackle complex problems and contribute to the ongoing exploration of quantum phenomena. 410 0$aSpringer Tracts in Modern Physics,$x1615-0430 ;$v291 606 $aQuantum theory 606 $aOperator theory 606 $aDifferential equations 606 $aCondensed matter 606 $aMathematical physics 606 $aQuantum Physics 606 $aOperator Theory 606 $aDifferential Equations 606 $aCondensed Matter Physics 606 $aMathematical Physics 615 0$aQuantum theory. 615 0$aOperator theory. 615 0$aDifferential equations. 615 0$aCondensed matter. 615 0$aMathematical physics. 615 14$aQuantum Physics. 615 24$aOperator Theory. 615 24$aDifferential Equations. 615 24$aCondensed Matter Physics. 615 24$aMathematical Physics. 676 $a515.625 700 $aVeliev$b Oktay$0792319 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910842294003321 996 $aMultidimensional Periodic Schrödinger Operator$91771629 997 $aUNINA