LEADER 08090nam 22004213 450 001 9910841858303321 005 20240308080228.0 010 $a981-9975-16-6 035 $a(CKB)30597448900041 035 $a(MiAaPQ)EBC31201119 035 $a(Au-PeEL)EBL31201119 035 $a(EXLCZ)9930597448900041 100 $a20240308d2024 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aParticle Packing Method for Recycled Aggregate Concrete 205 $a1st ed. 210 1$aSingapore :$cSpringer,$d2024. 210 4$d©2024. 215 $a1 online resource (288 pages) 311 $a981-9975-15-8 327 $aIntro -- Preface -- Acknowledgments -- Contents -- About the Authors -- Nomenclature -- List of Figures -- List of Tables -- 1 Background on Techniques for Sustainable Use of Recycled Aggregate and Application of Particle Packing Method -- 1.1 Overview on Sustainable Development -- 1.2 RAC in Sustainable Construction -- 1.3 Problems in RAC -- 1.3.1 General Problems -- 1.3.2 Problems in India -- 1.4 Solutions to Address the Problems in RAC -- 1.4.1 Treatment Methods to Remove the Attached Mortar -- 1.4.2 Treatment Methods to Strengthen the Attached Mortar -- 1.4.3 Mix Design Methods for RAC -- 1.4.4 Mixing Methods for RAC -- 1.5 Organization of the Book -- 1.6 Closure -- References -- Part I Materials Processing and Characterization -- 2 Production and Processing of Aggregates -- 2.1 Introduction -- 2.2 Extraction of Recycled Coarse Aggregate -- 2.3 Production and Processing of Natural Coarse Aggregates -- 2.4 Closure -- References -- 3 Characterization of Materials -- 3.1 Introduction -- 3.2 Coarse Aggregates -- 3.2.1 Physical Properties Coarse Aggregate -- 3.2.2 Mechanical Properties of Coarse Aggregate -- 3.3 Closure -- References -- Part II Concrete Mix Proportioning and Mixing -- 4 Particle Packing Method of Mix Proportioning and Modified Mixing Approach -- 4.1 Introduction -- 4.2 Particle Packing Method (PPM) -- 4.2.1 Determination of Aggregate Fractions and Packing Density -- 4.3 Mix Proportion -- 4.3.1 Aggregate Content -- 4.3.2 Paste Content -- 4.4 Mixing Process -- 4.5 Closure -- References -- Part III Multi-Scale Performance Assessment of Concrete Mixes -- 5 Macro-level Performance Assessment of Concrete: Conventional Approach -- 5.1 Introduction -- 5.2 Performance of Concrete Mixes -- 5.2.1 Fresh Concrete -- 5.2.2 Hardened Concrete -- 5.3 Comparative Study -- 5.4 Statistical Analysis -- 5.5 Constitutive Relationship of RAC. 327 $a5.5.1 Material Model -- 5.6 Closure -- References -- 6 Macro-level Performance Assessment of Concrete: Experimental Fracture Analysis -- 6.1 Introduction -- 6.2 Fracture Analysis of Concrete -- 6.3 Experimental Investigation -- 6.3.1 Details of Test Setup and Test Procedure -- 6.4 Results -- 6.4.1 Load-CMOD Relationship -- 6.4.2 Fracture Energy -- 6.4.3 Double-upper KK Fracture Parameter -- 6.5 Discussion -- 6.5.1 Influence of Aggregate Type -- 6.5.2 Influence of Mix Design Method -- 6.5.3 Influence of the Size of the Specimen -- 6.6 Comparative Study on upper G Subscript upper FGF -- 6.7 Closure -- References -- 7 Performance Assessment of Concrete: Meso-, Micro-, Nano-level, and Physio-chemical Analysis -- 7.1 Introduction -- 7.2 Multi-scale Characterization of Concrete -- 7.2.1 Thermogravimetric Analysis (TGA) -- 7.2.2 Nanoindentation Technique -- 7.2.3 Image Analysis of Back-Scattered Electrons (BSE) Images -- 7.2.4 Image Analysis of X-Ray Microtomographic Images -- 7.3 Experimental Investigation -- 7.3.1 Sample Preparation for Thermogravimetric Analysis -- 7.3.2 Sample Preparation for Nanoindentation and SEM -- 7.3.3 Sample Preparation for X-Ray Microtomography -- 7.4 Thermogravimetric Analysis -- 7.4.1 Estimation of Degree of Hydration -- 7.4.2 Calculation of Mass Loss at Different Phases and upper W Subscript upper BWB -- 7.4.3 Estimation of upper W Subscript upper B normal infinityWBinfty -- 7.4.4 Degree of Hydration (alpha?) -- 7.5 Investigation on the Presence of Pozzolanic Material in RCA -- 7.5.1 CH Bound Water and Free CH Content -- 7.5.2 Fourier Transform Infrared Spectroscopy Analysis -- 7.6 Relationship Between Degree of Hydration and Compressive Strength -- 7.7 Nanoindentation -- 7.7.1 Results and Discussion -- 7.8 Image Analysis of BSE Images -- 7.8.1 Results and Discussion -- 7.9 X-Ray Microtomography. 327 $a7.9.1 Methodology of Image Analysis of XRT Images -- 7.9.2 Results and Discussion -- 7.10 Relationship Between Micro-structural and Macro-mechanical Properties -- 7.11 Closure -- References -- Part IV Sustainability Assessment of Recycled Aggregate Concrete -- 8 Life Cycle Assessment and Cost Analysis -- 8.1 Introduction -- 8.2 Life Cycle Assessment -- 8.3 Methodology -- 8.3.1 Goal and Scope Definition -- 8.3.2 Life Cycle Inventory (LCI) Data -- 8.3.3 Life Cycle Impact Assessment (LCIA) -- 8.4 Results and Discussion -- 8.4.1 Interpretation of Results -- 8.5 Sensitivity Analysis -- 8.5.1 Case 1 -- 8.5.2 Case 2 -- 8.5.3 Case 3 -- 8.5.4 Critical Analysis -- 8.6 Cost Analysis -- 8.7 Closure -- References -- Part V Structural Applications -- 9 Structural Applications: Beam -- 9.1 Introduction -- 9.2 Reinforced RAC Beams -- 9.2.1 Flexure Behaviour -- 9.2.2 Shear Behaviour -- 9.3 Impact of PPM Mix Design Approach -- 9.3.1 Experimental Program -- 9.3.2 Test Setup and Procedure -- 9.4 Discussion on Shear and Flexure Performance -- 9.4.1 Shear Performance -- 9.4.2 Flexure Performance -- 9.5 Shear Strength Assessment of RAC Beams -- 9.5.1 Comparative Study on Shear Strength Prediction of RAC Beams Without Stirrups -- 9.5.2 Comparative Study on Shear Strength Prediction of RAC Beams with Stirrups -- 9.5.3 Critical Analysis of Design Parameters -- 9.6 Expression for the Shear Strength of RAC Beams -- 9.6.1 Without Transverse Reinforcement -- 9.6.2 With Transverse Reinforcement -- 9.6.3 Effectiveness of Stirrups in Shear Resistance -- 9.7 Closure -- References -- 10 Structural Applications: Column -- 10.1 Introduction -- 10.2 Performance of RAC Column in Axial Loading -- 10.3 Impact of PPM on Compressive Strength of RAC Column -- 10.3.1 Experimental Program -- 10.3.2 Test Setup and Test Procedure -- 10.4 Results and Discussion. 327 $a10.4.1 Crack Pattern and Failure Mode -- 10.4.2 Load-Displacement Relationship -- 10.4.3 Strain in Concrete and Poisson's Ratio -- 10.4.4 Effect of Confinement -- 10.4.5 Assessment of the Test Results with Design Specifications -- 10.5 Closure -- References -- 11 Structural Applications: Slab -- 11.1 Introduction -- 11.2 Performance of Reinforced RAC Slab -- 11.3 Impact of PPM on Punching Shear Strength of RAC Slab -- 11.3.1 Experimental Program -- 11.3.2 Test Setup and Test Procedure -- 11.4 Results and Discussion -- 11.4.1 Crack Pattern and Failure Mode -- 11.4.2 Load-Deflection Relationship -- 11.4.3 Strain in Longitudinal Reinforcement and Concrete -- 11.5 Comparison with Design Codes -- 11.5.1 ch11IS456 -- 11.5.2 ch11ACI318 -- 11.5.3 ch11BS1985 -- 11.5.4 ch11Eurocode2 -- 11.5.5 ch11fib -- 11.5.6 ch11NZS2006 -- 11.5.7 ch11JSCE2007 -- 11.5.8 Critical Analysis -- 11.6 Yield Line Theory -- 11.6.1 Critical Analysis -- 11.7 Critical Shear Crack Theory -- 11.7.1 Critical Analysis -- 11.8 Parametric Study -- 11.9 Closure -- References -- Appendix A Primary Data Regarding NCA and RCA Production -- A.1 Natural Coarse Aggregate Production -- A.2 Recycled Coarse Aggregate Production -- Appendix B Database of RAC Beams Without Shear Reinforcement -- Appendix C Database of RAC Beams with Shear Reinforcement -- Appendix D Database of Punching Shear Test of RAC Slabs -- References. 700 $aPradhan$b Subhasis$01730704 701 $aKumar$b Shailendra$01427344 701 $aBarai$b Sudhirkumar V$01730705 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910841858303321 996 $aParticle Packing Method for Recycled Aggregate Concrete$94142081 997 $aUNINA