LEADER 01403nam 2200361 n 450 001 996390672903316 005 20200824121511.0 035 $a(CKB)4940000000099820 035 $a(EEBO)2248509098 035 $a(UnM)99830479e 035 $a(UnM)99830479 035 $a(EXLCZ)994940000000099820 100 $a19950803d1682 uy | 101 0 $alat 135 $aurbn||||a|bb| 200 00$aTractatulus de modo & ratione formandi voces derivativas linguĉ Latinĉ$b[electronic resource] $ecui accedunt quĉdam observationes de compositis & decompositis. Opera Edvardi Philippi Londinensis. Auspiciis clarissimi & ornatissimi viri Gulielmi Bassetti equitis aurati ex clavertonia in agro Somersetensi 210 $aLondini $c[s.n.]$danno Domini MDCLXXXII. [1682] 215 $a[2], 8, [2] p 300 $aThe last page is blank. 300 $aCopy cropped at head, affecting pagination. 300 $aReproduction of the original in the British Library. 330 $aeebo-0018 606 $aLatin language$xVocabulary$vEarly works to 1800 615 0$aLatin language$xVocabulary 700 $aPhillips$b Edward$f1630-1696?$01003988 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bWaOLN 906 $aBOOK 912 $a996390672903316 996 $aTractatulus de modo & ratione formandi voces derivativas linguĉ Latinĉ$92334596 997 $aUNISA LEADER 06265nam 22005775 450 001 9910841857903321 005 20250807153030.0 010 $a9783031497766 024 7 $a10.1007/978-3-031-49776-6 035 $a(CKB)30499977800041 035 $a(MiAaPQ)EBC31176057 035 $a(Au-PeEL)EBL31176057 035 $a(DE-He213)978-3-031-49776-6 035 $a(EXLCZ)9930499977800041 100 $a20240222d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPrimes and Particles $eMathematics, Mathematical Physics, Physics /$fby Martin H. Krieger 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Birkhäuser,$d2024. 215 $a1 online resource (109 pages) 311 08$a9783031497759l 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Witten on Mathematics and Physics -- Acknowledgments -- Contents -- About the Author -- Chapter 1: Introduction -- 1.1 Our Examples -- 1.2 The Ising Model in Two Dimensions: An Identity in a Manifold Presentation of Profiles -- 1.3 Dedekind-Weber -- 1.4 The Stability of Matter -- 1.5 Packaging Functions, Riemann Zeta Function -- Appendix -- A.1 Subheads of Dyson and Lenard´s 1967-1968 Papers on the Stability of Matter -- A.2 The ``Numbered´´ Flow of Theorems and Lemmas of the Dyson-Lenard Proof -- A.2.1 Theorems -- A.2.2 Lemmas -- A.3 The Flow of the Dyson-Lenard Proof, as Lemmas Hanging from a Tree of Theorems -- A.4 The Structure of Lieb and Thirring´s Argument in ``Bound for the Kinetic Energy of Fermions Which Proves the Stability of ... -- A.5 Subheads and Subtopics of C.N. Yang, ``The Spontaneous Magnetization [M] of a Two-Dimensional Ising Model´´ (1952) -- Chapter 2: Why Mathematical Physics? -- 2.1 The Big Ideas -- 2.2 Ising in Two Dimensions: An Identity in a Manifold Presentation of Profiles -- 2.3 Ising Susceptibility -- 2.4 Where´s the Physics? -- 2.5 Dedekind-Weber and Reciprocity -- Chapter 3: Learning from Newton -- 3.1 Lessons from Newton -- 3.2 Creativity -- 3.3 Mathematical Physics -- 3.4 Influence -- 3.5 The Apocalypse -- Chapter 4: Primes and Particles -- 4.1 The Thermodynamics and Music of the Numbers -- 4.2 A Potted History -- 4.3 Symmetry and Orderliness -- 4.4 Coherence -- 4.5 Decomposition -- 4.6 Hierarchy -- 4.7 Adding-Up and Linearity -- 4.8 Divisibility -- Chapter 5: So Far and in Prospect -- 5.1 Kinship and Particles -- 5.2 Primes and Particles -- 5.3 Effective Field Theory -- 5.4 Packaging Functions Connecting Spectra to Surprising Symmetries -- 5.4.1 Multiple Ways of Computing Packaging Functions, Revealing Other Symmetries in the Spectrum. 327 $a5.4.2 Algebraic, Arithmetic, Analytic: An Analogy of Analogies: Syzygies -- 5.5 The Right Particles or Parts -- 5.5.1 Fermions -- Chapter 6: Creation: When Something Appears Out of Nothing -- 6.1 Points -- 6.2 Vacua -- 6.3 Mathematical Sleight of Hand: So to Speak -- 6.4 Points, Again -- Chapter 7: Packaging ``Spectra´´ (as in Partition Functions and L/?-Functions) to Reveal Symmetries in Nature and in Numbers -- 7.1 Geometry and Harmony -- 7.2 Parts and the Right Parts -- 7.3 Plenitude -- 7.4 Manifold Perspectives or Profiles -- 7.5 Layers -- 7.6 Fermions -- 7.7 A Concrete Realization of the Dedekind-Weber Program -- 7.8 Another Multiplicity -- Chapter 8: Legerdemain in Mathematical Physics: Structure, ``Tricks,´´ and Lacunae in Derivations of the Partition Function of... -- 8.1 Examples -- 8.2 The Two-Dimensional Ising Model -- 8.2.1 The Meaning of the Numbers -- 8.2.2 An Amazing Invention -- 8.2.3 Employing a Device of the Past -- 8.2.4 Where Did That Come From? -- 8.2.5 ``A Useful Identity, Easily Seen´´ -- 8.2.6 Signposting Along the Way -- 8.2.7 ``Further Details of Simplifications Like This Will Not Be Reported Here´´ -- 8.3 The Stability of Matter -- 8.3.1 ``Hacking Through A Forest Of Inequalities´´ -- 8.3.2 ``Thomas-Fermi Atoms Do Not Bind´´ -- 8.3.3 ``An Elementary Identity, Fourier Analysts Are Quite Familiar with It. Gruesome Details, Nasty and Ghastly Calculations,... -- 8.4 Genealogy Reconsidered -- Chapter 9: Mathematical Physics -- Bibliography -- Index. 330 $aMany philosophers, physicists, and mathematicians have wondered about the remarkable relationship between mathematics with its abstract, pure, independent structures on one side, and the wilderness of natural phenomena on the other. Famously, Wigner found the "effectiveness" of mathematics in defining and supporting physical theories to be unreasonable, for how incredibly well it worked. Why, in fact, should these mathematical structures be so well-fitting, and even heuristic in the scientific exploration and discovery of nature? This book argues that the effectiveness of mathematics in physics is reasonable. The author builds on useful analogies of prime numbers and elementary particles, elementary structure kinship and the structure of systems of particles, spectra and symmetries, and for example, mathematical limits and physical situations. The two-dimensional Ising model of a permanent magnet and the proofs of the stability of everyday matter exemplify sucheffectiveness, and the power of rigorous mathematical physics. Newton is our original model, with Galileo earlier suggesting that mathematics is the language of Nature. 606 $aMathematics$xPhilosophy 606 $aPhysics$xPhilosophy 606 $aMathematical physics 606 $aPhilosophy of Mathematics 606 $aPhilosophy of Physics 606 $aMathematical Physics 606 $aTheoretical, Mathematical and Computational Physics 615 0$aMathematics$xPhilosophy. 615 0$aPhysics$xPhilosophy. 615 0$aMathematical physics. 615 14$aPhilosophy of Mathematics. 615 24$aPhilosophy of Physics. 615 24$aMathematical Physics. 615 24$aTheoretical, Mathematical and Computational Physics. 676 $a530.15 700 $aKrieger$b Martin H.$00 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910841857903321 996 $aPrimes and Particles$94142077 997 $aUNINA