LEADER 05325nam 2200661Ia 450 001 9910841506203321 005 20221223183809.0 010 $a1-282-25383-2 010 $a9786613814487 010 $a0-470-61149-9 010 $a0-470-39414-5 035 $a(CKB)2550000000005907 035 $a(EBL)477696 035 $a(OCoLC)593297110 035 $a(SSID)ssj0000341681 035 $a(PQKBManifestationID)11257850 035 $a(PQKBTitleCode)TC0000341681 035 $a(PQKBWorkID)10391362 035 $a(PQKB)10204953 035 $a(MiAaPQ)EBC477696 035 $a(EXLCZ)992550000000005907 100 $a20090113d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPower electronics semiconductor devices$b[electronic resource] /$fedited by Robert Perret 210 $aLondon $cISTE ;$aHoboken, NJ $cWiley$d2009 215 $a1 online resource (569 p.) 225 1 $aISTE ;$vv.66 300 $aDescription based upon print version of record. 311 $a1-84821-064-7 320 $aIncludes bibliographical references and index. 327 $aPower Electronics Semiconductor Devices; Table of Contents; Preface; Chapter 1. Power MOSFET Transistors; 1.1. Introduction; 1.2. Power MOSFET technologies; 1.2.1. Diffusion process; 1.2.2. Physical and structural MOS parameters; 1.2.3. Permanent sustaining current; 1.3. Mechanism of power MOSFET operation; 1.3.1. Basic principle; 1.3.2. Electron injection; 1.3.3. Static operation; 1.3.4. Dynamic operation; 1.4. Power MOSFET main characteristics; 1.5. Switching cycle with an inductive load; 1.5.1. Switch-on study; 1.5.2. Switch-off study 327 $a1.6. Characteristic variations due to MOSFET temperature changes1.7. Over-constrained operations; 1.7.1. Overvoltage on the gate; 1.7.2. Over-current; 1.7.3. Avalanche sustaining; 1.7.4. Use of the body diode; 1.7.5. Safe operating areas; 1.8. Future developments of the power MOSFET; 1.9. References; Chapter 2. Insulated Gate Bipolar Transistors; 2.1. Introduction; 2.2. IGBT technology; 2.2.1. IGBT structure; 2.2.2. Voltage and current characteristics; 2.3. Operation technique; 2.3.1. Basic principle; 2.3.2. Continuous operation; 2.3.3. Dynamic operation; 2.4. Main IGBT characteristics 327 $a2.5 One cycle of hard switching on the inductive load2.5.1. Switch-on study; 2.5.2. Switch-off study; 2.6 Soft switching study; 2.6.1. Soft switching switch-on: ZVS (Zero Voltage Switching); 2.6.2. Soft switching switch-off: ZCS (Zero Current Switching); 2.7. Temperature operation; 2.8. Over-constraint operations; 2.8.1. Overvoltage; 2.8.2. Over-current; 2.8.3. Manufacturer's specified safe operating areas; 2.9. Future of IGBT; 2.9.1. Silicon evolution; 2.9.2. Saturation voltage improvements; 2.10. IGBT and MOSFET drives and protections; 2.10.1. Gate drive design; 2.10.2. Gate drive circuits 327 $a2.10.3. MOSFET and IGBT protections2.11. References; Chapter 3. Series and Parallel Connections of MOS and IGBT; 3.1. Introduction; 3.2. Kinds of associations; 3.2.1. Increase of power; 3.2.2. Increasing performance; 3.3. The study of associations: operation and parameter influence on imbalances in series and parallel; 3.3.1. Analysis and characteristics for the study of associations; 3.3.2. Static operation; 3.3.3. Dynamic operation: commutation; 3.3.4. Transient operation; 3.3.5. Technological parameters that influence imbalances; 3.4. Solutions for design; 3.4.1. Parallel association 327 $a3.4.2. Series associations3.4.3. Matrix connection of components; 3.5. References; Chapter 4. Silicon Carbide Applications in Power Electronics; 4.1. Introduction; 4.2. Physical properties of silicon carbide; 4.2.1. Structural features; 4.2.2. Chemical, mechanical and thermal features; 4.2.3. Electronic and thermal features; 4.2.4. Other "candidates" as semiconductors of power; 4.3. State of the art technology for silicon carbide power components; 4.3.1. Substrates and thin layers of SiC; 4.3.2. Technological steps for achieving power components 327 $a4.4. Applications of silicon carbide in power electronics 330 $aThis book relates the recent developments in several key electrical engineering R&D labs, concentrating on power electronics switches and their use. The first sections deal with key power electronics technologies, MOSFETs and IGBTs, including series and parallel associations. The next section examines silicon carbide and its potentiality for power electronics applications and its present limitations. Then, a dedicated section presents the capacitors, key passive components in power electronics, followed by a modeling method allowing the stray inductances computation, necessary for the precise 410 0$aISTE 606 $aPower electronics 606 $aPower semiconductors 606 $aSolid state electronics 615 0$aPower electronics. 615 0$aPower semiconductors. 615 0$aSolid state electronics. 676 $a621.381/044 676 $a621.38152 701 $aPerret$b Robert$0318828 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910841506203321 996 $aPower electronics semiconductor devices$94140869 997 $aUNINA