LEADER 05353nam 2200649Ia 450 001 9910841396003321 005 20230421044538.0 010 $a1-282-30837-8 010 $a9786612308376 010 $a0-470-12586-1 010 $a0-470-12613-2 035 $a(CKB)1000000000376107 035 $a(EBL)468836 035 $a(OCoLC)467947204 035 $a(SSID)ssj0000308374 035 $a(PQKBManifestationID)11925117 035 $a(PQKBTitleCode)TC0000308374 035 $a(PQKBWorkID)10258253 035 $a(PQKB)11732853 035 $a(MiAaPQ)EBC468836 035 $a(EXLCZ)991000000000376107 100 $a19920731d1996 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aReviews in computational chemistry$h9$b[electronic resource] /$fedited by Kenny B. Lipkowitz and Donald B. Boyd 210 $aNew York $cWiley-VCH$d1996 215 $a1 online resource (318 p.) 225 0 $aReviews in computational chemistry ;$v9 300 $aDescription based upon print version of record. 311 $a0-471-18639-2 320 $aIncludes bibliographical references and indexes. 327 $aReviews in Computational Chemistry 9; Contents; Peptide Mimetic Design with the Aid of Computational Chemistry; Introduction; Peptide Mimetic Design Considerations; Case Studies in Peptide Mimetic Design; Human Leukocyte Elastase; The Renin-Angiotensin System; Renin; Angiotensin-Converting Enzyme; Angiotensin II; Combined Angiotensin-Converting Enzyme and Neutral Endopeptidase; Human Immunodeficiency Virus Protease; CD4; Thermolysin; Collagenase; a-Amylase; Fibrinogen; Thrombin; Endothelin-1; Somatostatin; Growth Hormone; Oxytocin; Neurotensin; Enkephalin; Dopamine Receptor Modulating Peptide 327 $aThyrotropin-Releasing HormoneSubstance P; R-Loop of Interleukin la; Bradykinin; Complementarity-Determining Regions; Gramicidin-S; Hypertrehalosemic Hormone; Erabutoxin B; Jaspamide; Taste Molecules; Other Mimetics; Summary of Computational Chemistry Techniques Applied to Peptide Mimetic Design; Nomenclature; Acknowledgment; References; Free Energy by Molecular Simulation; Introduction; Classical Statistical Thermodynamical Background; Computer Simulation Methods; Hamiltonian; Monte Carlo Simulations; Molecular Dynamics Simulations; Thermodynamic Perturbation; Thermodynamic Integration 327 $aThermodynamic CyclesPotentials of Mean Force; Free Energy Evaluations in Practice; Hamiltonian Coupling; Creation and Annihilation of Atoms; Constraints; Conformational Isomeric States; Long-Range Interactions; Boundary Conditions; Error Analysis; Sensitivity of Calculated Free Energies to Force Field Parameters; Electronic Polarization; Atomic Replacement Calculations; Recommendations; Free Energy Methodology; Choice of Pathway; Standard Protocol; Analysis of Results; Conclusion; Acknowledgment; References 327 $aThe Application of Molecular Modeling Techniques to the Determination of Oligosaccharide Solution ConformationsIntroduction; Carbohydrate Conformational Analysis: The Motivation and the Challenge; Electronic Effects and Carbohydrate Conformation; Carbohydrate Force Fields: An Overview; Hard Sphere Exo-Anomeric (HSEA) and Monte Carlo Methods; MM2/MM3; Macromolecular Force Fields and Molecular Dynamics Simulations; Role of Water-Sugar Interactions; Conclusions; References; Molecular Mechanics Calculated Con formational Energies of Organic Molecules: A Comparison of Force Fields; Introduction 327 $aThe Principles of Molecular MechanicsForms of Potential Energy Functions; Bond Stretching/Compression Functions; Bond Angle Bending Functions; Torsional Functions; Van der Waals Functions; Electrostatic Functions; Cross-Terms; Conjugated Systems; Parameterization; Comparisons of Calculated Conformational Energies; Reproducibility of Conformational Energies; Summary and Conclusions; Acknowledgments; References; Molecular Shape Descriptors; Introduction; Hierarchical Levels of Molecular Shape and Shape Descriptors; Some Notions Regarding Molecular Shape and Scaling 327 $aClassification of Molecular Models and Shape Descriptors 330 $aA select group of scientists from around the world join in this volume to create unique chapters aimed at both the novice molecular modeler and the expert computational chemist. Chapter 1 shows how molecular modeling of peptidomimetics plays a key role in drug discovery. Specific examples of successful computer-aided drug design are spelled out. Chapter 2 is a definitive exposition on thermodynamic perturbation and thermodynamic integration approaches in molecular dynamics simulations. Three additional chapters elucidate molecular modeling of carbohydrates, the best empirical force fields to u 410 0$aReviews in Computational Chemistry 606 $aChemistry$xData processing 606 $aChemistry$xMathematics 615 0$aChemistry$xData processing. 615 0$aChemistry$xMathematics. 676 $a542.85 676 $a542/.8 701 $aLipkowitz$b Kenny B$0855564 701 $aBoyd$b Donald B$0855565 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910841396003321 996 $aReviews in computational chemistry$91910004 997 $aUNINA