LEADER 05159nam 2200613Ia 450 001 9910840978203321 005 20230422044815.0 010 $a1-281-76417-5 010 $a9786611764173 010 $a3-527-61352-8 010 $a3-527-61353-6 035 $a(CKB)1000000000376611 035 $a(EBL)481816 035 $a(SSID)ssj0000257032 035 $a(PQKBManifestationID)11247153 035 $a(PQKBTitleCode)TC0000257032 035 $a(PQKBWorkID)10228945 035 $a(PQKB)10474302 035 $a(MiAaPQ)EBC481816 035 $a(OCoLC)184983871 035 $a(EXLCZ)991000000000376611 100 $a19991129d2000 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aTemplated organic synthesis$b[electronic resource] /$fedited by Franc?ois Diederich and Peter J. Stang 210 $aWeinheim ;$aChichester $cWiley-VCH$dc2000 215 $a1 online resource (432 p.) 300 $aIncludes index. 311 $a3-527-29666-2 327 $aTemplated Organic Synthesis; Contents; 1 Templates in Organic Synthesis: Definitions and Roles; 1.1 Introduction - Early Templates; 1.2 The Definition of a Molecular Template; 1.3 Roles of Templates; 1.3.1 Thermodynamic and Kinetic Templates; 1.3.2 Covalent and Non-covalent Template-Substrate Interactions; 1.3.3 Topology of Reaction; 1.3.3.1 Cyclization templates; 1.3.3.2 Linear templates; 1.3.3.3 Interweaving templates; 1.3.4 Scavenger Templates; 1.3.5 Negative Templates; 1.4 Measuring Template Effects; 1.4.1 Qualitative Detection of Template Effects 327 $a1.4.2 Quantification of Kinetic Template Effects in Terms of Effective Molarity, Substrate Affinity, and Maximum Rate Enhancement1.4.2.1 Linear templates; 1.4.2.2 Quantitative analysis of template effects in tethered reactions; 1.4.2.3 Cyclization templates; 1.5 Conclusion; Appendix 1a: Equations for Figure 1-5; Appendix 1b: Equations for Figure 1-10; References; 2 Templated Synthesis of Polymers - Molecularly Imprinted Materials for Recognition and Catalysis; 2.1 Introduction; 2.2 Preparation of Optically Active Linear Vinyl Polymers by Templated Synthesis 327 $a2.3 Exact Placement of Functional Groups on the Surfaces of Rigid Polymeric Materials Using Template Molecules2.4 Molecular Imprinting in Polymeric Materials Using Template Molecules; 2.4.1 The Principle; 2.4.2 The Optimization of the Structure of the Polymer Network; 2.4.3 The Role of the Binding-site Interactions; 2.4.4 Chiroptical Properties of the Crosslinked Polymers; 2.4.5 Chromatography Using Molecularly Imprinted Polymers; 2.4.6 Catalysis With Molecularly Imprinted Polymers; 2.4.7 Outlook; 2.5 Experimental Procedures; 2.5.1 Polymer from Scheme 2-5 327 $a2.5.1.1 Preparation of template monomer 7 [34]2.5.1.2 Preparation of the polymer [35]; 2.5.2 Polymer from Scheme 2-6; 2.5.2.1 Thermally initiated polymerization [36]; 2.5.2.2 Photochemically initiated polymerization [50]; 2.5.3 Polymer from Scheme 2-9 [136, 137]; 2.5.3.1 N-Ethyl-4-vinylbenzamide; 2.5.3.2 N-Ethyl-4-vinylbenzocarboximide acid ethyl ester; 2.5.3.3 N,N'-Diethyl-4-vinylbenzamidine (10a); 2.5.4 Preparation of the polymer [112]; References; 3 Templated Synthesis of Catenanes and Rotaxanes; 3.1 Introduction; 3.2 Metal-Templated Syntheses; 3.3 Hydrogen Bonding-assisted Syntheses 327 $a3.4 Hydrophobically Driven Syntheses3.5 Aromatic Templates; 3.6 Dialkylammonium-containing Rotaxanes; 3.7 Conclusions; 3.8 Experimental Procedures; 3.8.1 [2]Catenane 4 [13]; 3.8.2 [2]Catenane 12 [16]; 3.8.3 [2]Catenane 43 [31]; 3.8.4 [2]Rotaxane 51 [38]; 3.8.5 [2]Rotaxane 56 [381; 3.8.6 [2]Rotaxane 68 [45]; References; 4 Templated Synthesis of Carceplexes, Hemicarceplexes, and Capsules; 4.1 Introduction; 4.2 Carceplexes; 4.2.1 The First Soluble Carceplex; 4.2.1.1 Template ratios in the formation of an acetal-bridged carceplex; 4.2.1.2 Formation of a charged hydrogen bonded complex 327 $a4.2.1.3 Mechanism of formation for an acetal-bridged carceplex 330 $aTemplate-controlled reactions allow the synthesis of complex molecules which would hardly be achievable through classical methods. This handbook offers authoratative information on how noncovalent and covalent templates can be effectively applied to control reaction rates as well as regio- and stereoselectivity. From the concepts of template control such as molecular imprinting, self-replication, and reversible tether-directed remote functionalization, the reader is led to template-based ring-closing reactions, oligomerizations, and multiple functionalizations and their application in the synt 606 $aOrganic compounds$xSynthesis 606 $aPhysical organic chemistry 615 0$aOrganic compounds$xSynthesis. 615 0$aPhysical organic chemistry. 676 $a541.35 676 $a547.2 701 $aStang$b P. J$0968946 701 $aDiederich$b Franc?ois$0543126 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910840978203321 996 $aTemplated organic synthesis$92201342 997 $aUNINA