LEADER 10896nam 2200493 450 001 9910677499803321 005 20230427112353.0 010 $a1-394-16770-9 010 $a1-394-16769-5 035 $a(MiAaPQ)EBC7187374 035 $a(Au-PeEL)EBL7187374 035 $a(CKB)26068930200041 035 $a(EXLCZ)9926068930200041 100 $a20230427d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAdvances in Novel Formulations for Drug Delivery /$fedited by Raj K. Keservani, Rajesh Kumar Kesharwani, and Anil K. Sharma 210 1$aHoboken, NJ ;$aBeverly, MA :$cJohn Wiley & Sons, Inc. :$cScrivener Publishing LLC,$d[2023] 210 4$dİ2023 215 $a1 online resource (576 pages) 311 08$aPrint version: Keservani, Raj K. Advances in Novel Formulations for Drug Delivery Newark : John Wiley & Sons, Incorporated,c2023 9781394166435 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Novel Drug Carriers and Therapeutics -- Chapter 1 Nanoarchitectured Materials: Their Applications and Present Scenarios in Drug Delivery -- 1.1 Introduction -- 1.2 Liposomes -- 1.3 Nanoparticles -- 1.3.1 Nanoparticles in Drug Delivery -- 1.4 Nanoemulsions -- 1.4.1 Advantages and Shortcomings of Nanoemulsions -- 1.4.2 Application of Nanoemulsion in Drug Delivery -- 1.5 Dendrimers -- 1.5.1 Synthesis of Dendrimers -- 1.5.2 Advantages of Dendrimers -- 1.5.3 Applications of Dendrimers in Drug Delivery -- 1.6 Aquasomes -- 1.6.1 Properties of Aquasomes -- 1.6.2 Application of Aquasomes in Drug Delivery -- 1.7 Nanogel -- 1.7.1 Properties of Nanogels -- 1.7.2 Nanogels in Drug Delivery -- 1.8 Quantum Dots -- 1.8.1 Applications of Quantum Dots in Drug Delivery -- 1.9 Carbon Nanotubes -- 1.9.1 Features of Carbon Nanotubes -- 1.9.2 Carbon Nanotubes in Drug Delivery -- References -- Chapter 2 Nanopharmaceuticals for Drug Delivery -- 2.1 Introduction -- 2.2 What Are Nanopharmaceuticals and What Do They Do? -- 2.3 Nanopharmaceuticals Importance -- 2.4 Nanotechnology -- 2.5 Pharmaceutical Companies and Nanotechnology -- 2.6 Applications and Advantages of Nanopharmaceuticals as Drug Carriers -- 2.7 Characteristics of Nanoparticles in Nanopharmaceuticals -- 2.7.1 Particle Size -- 2.7.2 Surface Properties of Nanoparticles -- 2.7.3 Drug Loading -- 2.7.4 Drug Release -- 2.8 Targeted Drug Delivery -- 2.9 Types of Nanoparticles -- 2.10 Nanoparticle Preparation Methods -- 2.11 Evaluation of Nanoparticles -- 2.12 Efficiency of Drug Entrapment -- 2.13 Particle Shape -- 2.14 Size of the Particles -- 2.15 Zeta Potential -- 2.16 Rise of Nanopharmaceuticals -- 2.17 Nanopharmaceuticals Approval Regulations (FDA Rules & -- Regulations) -- 2.18 Conclusions and Prospects for the Future -- References. 327 $aChapter 3 Applications and Prospects of Nanopharmaceuticals Delivery -- 3.1 Introduction -- 3.2 Nanopharmaceuticals -- 3.3 Development of Nanopharmaceuticals -- 3.3.1 From Lab to the Marketplace -- 3.3.2 Techniques -- 3.3.3 Cost -- 3.3.4 Ethics -- 3.3.5 Nanopharmaceuticals Approval Regulations (FDA Rules & -- Regulations) -- 3.4 Clinical Applications of Nanotechnology -- 3.4.1 Diagnostic Applications -- 3.4.1.1 Detection -- 3.4.1.2 Protein Chips -- 3.4.1.3 Individual Target Probes -- 3.4.1.4 Nanotechnology as a Tool in Imaging -- 3.4.1.5 Sparse Cell Detection -- 3.4.2 Therapeutic Applications -- 3.4.2.1 Surfaces -- 3.4.2.2 Gene Delivery -- 3.4.2.3 Drug Delivery -- 3.4.2.4 Liposomes -- 3.4.2.5 Nanotechnology in Orthopedic Applications -- 3.4.2.6 Nanotechnology in Cardiac Therapy -- 3.4.2.7 Nanotechnology in Dental Care -- 3.4.2.8 Biomolecular Engineering -- 3.4.2.9 Biopharmaceuticals -- 3.5 Nanopharmaceuticals Delivery-Recent Applications -- 3.5.1 Nanoparticulate Systems for Vaccine -- 3.5.1.1 Polyanhydride-Based NPs -- 3.5.1.2 Biodegradable Synthetic PLGA NPs -- 3.5.1.3 Liposome-Based NPs -- 3.5.1.4 Polysaccharide-Based NPs -- 3.5.2 Chemotherapy -- 3.5.2.1 Increasing the Concentration of Chemotherapeutic Agents in Tumor Tissue -- 3.5.3 Drug/Gene Delivery -- 3.5.3.1 Nanoparticles Used in Drug Delivery System -- 3.5.3.2 Cellulose -- 3.6 Nanotechnology in Neurodegenerative Disorders Treatment -- 3.7 Future Perspective -- 3.8 Issues with Current Nanopharmaceutical Concepts -- 3.8.1 Large-Scale Manufacturing -- 3.8.2 Biological Challenges -- 3.8.3 Intellectual Property (IP) -- 3.8.4 Biocompatibility and Safety -- 3.8.5 Government Regulations -- 3.9 Conclusion -- References -- Chapter 4 Nanomedicine Regulation and Future Prospects -- 4.1 Introduction -- 4.2 Importance of Regulation of Nanomedicine. 327 $a4.3 Regulatory Challenges Faced by Nanomaterial in Medicine -- 4.3.1 Performing Various Functions -- 4.3.2 Nanomedicine Classification Issues -- 4.3.3 Variation in Size of the Particle -- 4.3.4 Manufacturing Process -- 4.3.5 Difficulties to Create CQA -- 4.3.6 Nanotoxicology and Cellular Response -- 4.3.7 Administering Right Doses -- 4.3.8 Pharmacokinetics -- 4.3.9 Developing Guidelines -- 4.4 Nanomedicine Future Aspects -- 4.5 Challenges that Threaten the Future of Nanomedicine -- 4.5.1 Financial Crisis -- 4.5.2 Lack of Confidence -- 4.5.3 Potential Dangers -- 4.5.4 Unsuccessful Patenting -- 4.5.5 Breakdowns in the Pharmaceuticals and Financial Markets -- 4.5.6 Limited Regulation -- 4.6 Future Prospects for Nanomedicine -- 4.6.1 Emerging Nanomaterials -- 4.6.2 Personalized Nanomedicine -- 4.6.3 Nanorobots and Nanodevices -- 4.6.4 Orthopedic Augmentations and Cytocompatibility -- 4.6.5 Cardiology and Nanotechnology -- 4.6.6 Cancer and Nanotechnology -- 4.6.7 NAPT -- 4.6.8 Gene, Protein, Lab-on-a-Chip Devices -- 4.6.9 Polymeric Nanoparticles in Medicine -- References -- Chapter 5 Nanotechnology Application in Drug Delivery for Medicinal Plants -- 5.1 Introduction -- 5.1.1 Nanodrug Delivery Systems (NDDS) -- 5.2 Nanoherbals -- 5.2.1 Cucuma longa (Cucurmin) -- 5.2.2 Gingko biloba -- 5.2.3 Artemisia -- 5.2.4 Silybum marianum-Silymarin -- 5.2.5 Salvia miltiorrhiza (Danshen) -- 5.2.6 Glycyrrhiza glabra (L.) -- 5.2.7 Camellia sinensis (Green tea) -- 5.2.8 Camptotheca acuminata -- 5.2.9 Leea indica -- 5.2.10 Ziziphus mauritiana (Malay apple) -- 5.2.11 Cuscuta chinensis -- 5.3 Conclusion -- References -- Chapter 6 Nanosystems Trends in Nutraceutical Delivery -- 6.1 Introduction -- 6.2 Classification of Nutraceuticals -- 6.3 Biopharmaceutical Issues Associated with Nutraceuticals -- 6.4 Nanosystems for Delivery of Nutraceuticals -- 6.4.1 Nanoemulsions. 327 $a6.4.2 Self-Emulsifying Systems -- 6.4.3 Solid Lipid Nanoparticles and Nanostructured Lipid Carriers -- 6.4.4 Liposomes -- 6.4.5 Polymeric Nanoparticles -- 6.4.6 Inorganic Nanoparticles -- 6.5 Challenges -- 6.6 Market Potential -- 6.7 Conclusion and Perspective -- References -- Chapter 7 Nanoencapsulated Systems for Delivery of Phytopharmaceuticals -- 7.1 Introduction -- 7.1.1 Nanoencapsulation Techniques in Phytopharmaceuticals -- 7.1.1.1 Physical-Chemical Techniques -- 7.1.1.2 Chemicals Techniques -- 7.1.1.3 Mechanical Techniques -- 7.1.2 Characterization of Nanoencapsulates -- 7.1.2.1 Morphological Characterization -- 7.1.2.2 Physicochemical Characterization -- 7.1.3 Nanoencapsulated Systems for Free Delivery of Phytopharmaceuticals -- 7.1.4 Studies to Evaluate Phytopharmaceuticals Nanoencapsulates -- 7.2 Conclusions -- References -- Chapter 8 Topical Drug Delivery Using Liposomes and Liquid Crystalline Phases for Skin Cancer Therapy -- 8.1 Introduction -- 8.2 Liposomes for Topical Application -- 8.2.1 Development of Liposomal Nanoparticles -- 8.3 Liquid Crystals and Liquid Crystalline Nanodispersions for Topical Application -- 8.3.1 Characterization Techniques -- 8.4 Physical Methods Applied to Nanoparticles Delivery -- 8.4.1 Sonophoresis -- 8.4.2 Microneedles -- 8.5 Conclusions and Perspectives -- Acknowledgements -- References -- Chapter 9 Vesicular Drug Delivery in Arthritis Treatment -- 9.1 Introduction -- 9.2 Skin Penetration Pathways -- 9.2.1 Intercellular Pathway -- 9.2.2 Transcellular Pathway -- 9.2.3 Appendgeal Pathway -- 9.3 Principles of Drug Permeation Through Skin -- 9.4 Problems Associated with Conventional Dosage Forms -- 9.5 Novel Treatment Strategies for Arthritis -- 9.5.1 Traditional Liposomes as Skin Drug Delivery Systems -- 9.5.2 Transferosomes (Ultradeformable Liposomes) as Skin Drug Delivery Systems. 327 $a9.5.3 Ethosomes as Skin Drug Delivery Systems -- 9.5.4 Niosomes as Skin Drug Delivery Systems -- 9.6 Conclusion and Future Perspectives -- References -- Chapter 10 Perspectives of Novel Drug Delivery in Mycoses -- 10.1 Introduction -- 10.2 Role of Conventional Drugs in Antifungal Therapy -- 10.3 Mechanism of Action of Conventional Antifungals -- 10.4 Summary of Nanoparticles and Their Role in Antifungal Therapy -- 10.4.1 Lipid Nanoparticles -- 10.4.2 Liposome -- 10.4.3 Transfersomes -- 10.4.4 Transethosomes -- 10.4.5 Solid Lipid Nanoparticles (SLN) -- 10.4.6 Nanostructured Lipid Carriers (NLC) -- 10.4.7 Polymer Lipid Hybrid Nanoparticles (PLN) -- 10.4.8 Polymeric Nanoparticles -- 10.4.9 Microsponge and Nanosponge Systems -- 10.4.10 Polymeric Micelles -- 10.4.11 Polymersomes -- 10.4.12 Dendrimers -- 10.4.13 Metallic Nanoparticles -- 10.5 Other Drug Delivery Systems -- 10.5.1 Niosomes -- 10.5.2 Spanlastics -- 10.5.3 Microemulsions and Nanoemulsions -- 10.5.4 Silicon Dioxide Nanoparticles -- 10.6 Conclusion -- References -- Chapter 11 Nano-Based Drug Delivery in Eliminating Tuberculosis -- 11.1 Introduction -- 11.1.1 Latent and Active Tuberculosis -- 11.1.2 Multidrug-Resistant Tuberculosis (MDR-TB) -- 11.1.3 Extensively Drug-Resistant TB -- 11.2 Antitubercular Therapy -- 11.3 Therapies Based on Nanotechnology -- 11.3.1 Nanoparticles for Anti-TB Therapy -- 11.3.2 Advantages and Disadvantages of Nanoparticles -- 11.3.3 Types of Nanoparticles and Their Characteristics -- 11.3.3.1 TB Dendrimers -- 11.3.3.2 Cyclodextrins -- 11.3.3.3 Polymeric Micelles -- 11.3.3.4 Liposomes -- 11.3.3.5 Nanoemulsions -- 11.3.3.6 Solid Lipid Nanoparticles -- 11.3.3.7 Niosomes -- 11.3.3.8 Polymeric Nanoparticles -- 11.4 Routes of Administration of Nanoparticles -- 11.4.1 Oral Administration of Nanoparticles -- 11.4.2 Inhalational Administration of Nanoparticles. 327 $a11.4.3 Intravenous Administration of Nanoparticles. 606 $aDrug delivery systems 615 0$aDrug delivery systems. 676 $a615.6 702 $aKeservani$b Raj K. 702 $aKesharwani$b Rajesh Kumar 702 $aSharma$b Anil K. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910677499803321 996 $aAdvances in Novel Formulations for Drug Delivery$93301842 997 $aUNINA LEADER 01927oam 2200553 n 450 001 9910831177603321 005 20230828221057.0 010 $a1-118-66478-7 035 $a(CKB)3450000000004100 035 $a(MH)002514974-1 035 $a(SSID)ssj0001034062 035 $a(PQKBManifestationID)11645282 035 $a(PQKBTitleCode)TC0001034062 035 $a(PQKBWorkID)11007956 035 $a(PQKB)10618881 035 $a(PPN)189292571 035 $a(EXLCZ)993450000000004100 100 $a20740829d1974 uy 0 101 0 $aeng 181 $ctxt 182 $cc 183 $acr 200 10$aHuman adaptability to Antarctic conditions$fE. K. Eric Gunderson, editor$b[electronic resource] 210 $a[Washington]$cAmerican Geophysical Union$d[c1974] 215 $a1 online resource (ix, 131 p.)$cillus 225 0$aAntarctic research series ;$vv. 22 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-87590-121-2 320 $aIncludes bibliographies. 606 $aAdaptation, Physiological 606 $aCold Climate 606 $aCold adaptation$zAntarctica 606 $aCold$xPhysiological effect 615 2$aAdaptation, Physiological. 615 2$aCold Climate. 615 0$aCold adaptation 615 0$aCold$xPhysiological effect. 676 $a612/.01446 700 $aGunderson$b E. K. Eric$g(Ellsworth K. Eric),$f1923-$0967965 702 $aGunderson$b E. K. Eric 801 0$bDLC 801 1$bDLC 801 2$bm.c. 801 2$bHMS 906 $aBOOK 912 $a9910831177603321 996 $aHuman adaptability to Antarctic conditions$92198411 997 $aUNINA 999 $aThis Record contains information from the Harvard Library Bibliographic Dataset, which is provided by the Harvard Library under its Bibliographic Dataset Use Terms and includes data made available by, among others the Library of Congress LEADER 03696nam 22005655 450 001 9910377835003321 005 20251116225236.0 010 $a3-030-40116-2 024 7 $a10.1007/978-3-030-40116-0 035 $a(CKB)4100000010349009 035 $a(DE-He213)978-3-030-40116-0 035 $a(MiAaPQ)EBC6109556 035 $a(PPN)242977367 035 $a(EXLCZ)994100000010349009 100 $a20200210d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aWater-resisting Property and Key Technologies of Grouting Reconstruction of the Upper Ordovician Limestone in North China?s Coalfields /$fby Hao Wang 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (XVI, 183 p. 98 illus., 83 illus. in color.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 311 08$a3-030-40115-4 327 $aIntroduction -- Paleosedimentary Environments And Karst Characteristics Of Ordovician Limestone In North China Coalfields -- Water-Bearing And Water-Resisting Properties Of Top Of Ordovician Limestone In North China Coalfields -- Utilizability Of Weathered And Filled Zone Of Top Of Ordovician Limestone In North China Coalfields -- Criterion For Utilization And Grouting Reconstruction Of Top Of Ordovician Limestone -- Technical System Of Grouting Reconstruction Of Top Of Ordovician Limestone -- Case Study Of Utilization And Grouting Reconstruction Of Top Of Ordovician Limestone -- Conclusions And Innovation Points. 330 $aThis book examines the water resistance capacity of the Upper Ordovician limestone and its feasibility as a water barrier to achieve safe and green mining. Mine water inrush events often occur during coal mine construction and production; they account for a large proportion of the coal mine disasters and accidents in China, second only to gas explosions. As mining depths and mining intensity continue to increase, the hydrogeological conditions encountered are becoming more complex. This book describes in-situ methods designed to test the water resistance of the limestone layer, as well as specific grouting techniques developed to transform this layer into a barrier that can prevent water inrush during mining. The innovative technologies, which were applied and validated in two coal mines, are applicable to other coal mines or any underground engineering works. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aGeology 606 $aGeotechnical engineering 606 $aHydrogeology 606 $aGeology$3https://scigraph.springernature.com/ontologies/product-market-codes/G17002 606 $aGeotechnical Engineering & Applied Earth Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/G37010 606 $aHydrogeology$3https://scigraph.springernature.com/ontologies/product-market-codes/G19005 615 0$aGeology. 615 0$aGeotechnical engineering. 615 0$aHydrogeology. 615 14$aGeology. 615 24$aGeotechnical Engineering & Applied Earth Sciences. 615 24$aHydrogeology. 676 $a622.5 700 $aWang$b Hao$4aut$4http://id.loc.gov/vocabulary/relators/aut$07177 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910377835003321 996 $aWater-resisting Property and Key Technologies of Grouting Reconstruction of the Upper Ordovician Limestone in North China?s Coalfields$91985650 997 $aUNINA