LEADER 05476nam 2200661 450 001 9910831160403321 005 20210208190929.0 010 $a3-527-68007-1 010 $a3-527-68005-5 010 $a3-527-68008-X 035 $a(CKB)3710000000385553 035 $a(EBL)1985844 035 $a(SSID)ssj0001495206 035 $a(PQKBManifestationID)11967805 035 $a(PQKBTitleCode)TC0001495206 035 $a(PQKBWorkID)11451626 035 $a(PQKB)11349179 035 $a(MiAaPQ)EBC1985844 035 $a(PPN)191305413 035 $a(EXLCZ)993710000000385553 100 $a20151106h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aNanocarbons for advanced energy storage$hVolume 1 /$fedited by Xinliang Feng ; contributors, Lars Borchardt [and fifty-six others] 210 1$aWeinheim an der Bergstrasse, Germany :$cWiley-VCH,$d2015. 210 4$dİ2015 215 $a1 online resource (489 p.) 300 $aDescription based upon print version of record. 311 $a3-527-33665-6 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCover; Contents; Preface; List of Contributors; Chapter 1 Nanostructured Activated Carbons for Supercapacitors; 1.1 Supercapacitors; 1.2 Activated Carbon as Electrode for Supercapacitors; 1.3 Synthesis of ACs; 1.3.1 Precursors; 1.3.2 Activation Method; 1.3.2.1 Physical Activation; 1.3.2.2 Chemical Activation; 1.3.2.3 Electrochemical Activation; 1.4 Various Forms of ACs as Supercapacitor Electrodes; 1.4.1 Activated Carbon Powders; 1.4.2 Activated Carbon Films and Monoliths; 1.4.3 Activated Carbon Fibers; 1.5 Key Factors Determining the Electrochemical Performance of AC-Based Supercapacitors 327 $a1.5.1 Pore Size and Pore Size Distribution1.5.2 Pore Alignment; 1.5.3 Surface Functionalization; 1.5.4 Electrical Conductivity of the Electrode; 1.5.5 Electrolyte Selection; 1.5.6 Understandings of Ion Adsorption in Porous Structure; 1.5.7 Quantum Capacitance of Carbon and Doping; 1.6 Self-discharge of ACs-Based Supercapacitors; 1.7 Summary; References; Chapter 2 Nanocarbon Hybrids with Silicon, Sulfur, or Paper/Textile for High-Energy Lithium Ion Batteries; 2.1 Introduction; 2.2 Nanocarbon/Silicon Hybrid Anodes; 2.2.1 Nanocarbon@Silicon Structure; 2.2.2 Silicon@Nanocarbon Structure 327 $a2.2.3 Silicon@Void@Nanocarbon Structure2.2.4 Nanocarbon/Silicon Hierarchical Structure; 2.3 Nanocarbon/Sulfur Hybrid Cathodes; 2.3.1 0D Nanocarbon (Nanoporous Carbon); 2.3.2 1D Nanocarbon (Carbon Nanotubes and Nanofibers); 2.3.3 2D Nanocarbon (Graphene Oxide and Reduced Graphene Oxide); 2.3.4 3D Nanostructured Carbon; 2.4 Nanocarbon/Paper/Textile Hybrids as Conductive Substrates; 2.4.1 Carbon Nanotubes/Paper/Textile Hybrids; 2.4.2 Graphene/Textile Hybrids; 2.5 Conclusion and Perspective; References; Chapter 3 Precursor-Controlled Synthesis of Nanocarbons for Lithium Ion Batteries 327 $a3.1 Introduction3.2 Precursor-Controlled Synthesis of Nanocarbons; 3.3 Nanocarbons in LIBs; 3.3.1 Pure Nanocarbons as Anode in LIBs; 3.3.2 Nanocarbon Composites as Anode in LIBs; 3.3.2.1 Silicon-Nanocarbon Composites; 3.3.2.2 Tin-Nanocarbon Composites; 3.3.2.3 Metal Oxide-Nanocarbon Composites; 3.3.3 Nanocarbon in Cathode of LIBs; 3.4 Summary and Outlook; References; Chapter 4 Nanocarbon/Metal Oxide Hybrids for Lithium Ion Batteries; 4.1 Metal Oxides (MOs) for Lithium Ion Batteries; 4.2 Carbon Nanocoating/MO Hybrids for LIBs; 4.2.1 Manganese Oxides/Carbon Coating Hybrids 327 $a4.2.2 Iron Oxides/Carbon Coating Hybrids4.2.3 Tin Oxides/Carbon Coating Hybrids; 4.2.4 Other MOs/Carbon Coating Hybrids; 4.3 CNFs/MO Hybrids and CNTs/MO Hybrids; 4.3.1 CNFs/MO Hybrids; 4.3.2 CNTs/MO Hybrids; 4.4 Graphene/MO Hybrids; 4.4.1 Cobalt Oxides/Graphene Hybrids; 4.4.2 Iron Oxides/Graphene Hybrids; 4.4.3 Manganese Oxides/Graphene Hybrids; 4.4.4 Tin Oxides/Graphene Hybrids; 4.4.5 Other MOs/Graphene Hybrids; 4.5 Hierarchical Nanocarbon/MO Hybrids; 4.5.1 Carbon Nanocoating/CNTs/MO Hybrids; 4.5.2 Carbon Nanocoating/Graphene/MO Hybrids; 4.5.3 CNFs/CNTs/Graphene/MO Hybrids 327 $a4.6 Summary and Perspectives 330 $aThis first volume in the series on nanocarbons for advanced applications presents the latest achievements in the design, synthesis, characterization, and applications of these materials for electrochemical energy storage. The highly renowned series and volume editor, Xinliang Feng, has put together an internationally acclaimed expert team who covers nanocarbons such as carbon nanotubes, fullerenes, graphenes, and porous carbons. The first two parts focus on nanocarbon-based anode and cathode materials for lithium ion batteries, while the third part deals with carbon material-based supercapacit 606 $aSupercapacitors$xMaterials 606 $aNanostructured materials 606 $aEnergy storage 606 $aElectric batteries$xMaterials 615 0$aSupercapacitors$xMaterials. 615 0$aNanostructured materials. 615 0$aEnergy storage. 615 0$aElectric batteries$xMaterials. 676 $a621.3126 702 $aFeng$b Xinliang 702 $aBorchardt$b Lars 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910831160403321 996 $aNanocarbons for advanced energy storage$93981699 997 $aUNINA