LEADER 05284nam 2200637Ia 450 001 9910831077303321 005 20230725044904.0 010 $a1-282-48274-2 010 $a9786612482748 010 $a3-527-62995-5 010 $a3-527-62996-3 035 $a(CKB)2550000000007399 035 $a(EBL)485698 035 $a(OCoLC)609856381 035 $a(SSID)ssj0000365854 035 $a(PQKBManifestationID)11925596 035 $a(PQKBTitleCode)TC0000365854 035 $a(PQKBWorkID)10414393 035 $a(PQKB)11760748 035 $a(MiAaPQ)EBC485698 035 $a(EXLCZ)992550000000007399 100 $a20781220d2010 uy 0 101 0 $aeng 135 $aur|n||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aSilicon nanocrystals$b[electronic resource] $efundamentals, synthesis and applications /$fedited by Lorenzo Pavesi and Rasit Turan 210 $aHoboken, NJ $cWiley-Blackwell$d2010 215 $a1 online resource (651 p.) 300 $aDescription based upon print version of record. 311 $a3-527-32160-8 320 $aIncludes bibliographical references and index. 327 $aSilicon Nanocrystals: Fundamentals, Synthesis and Applications; Contents; List of Contributors; 1 Introduction; References; 2 Electronic and Optical Properties of Silicon Nanocrystals; 2.1 Introduction; 2.2 Ab Initio Calculation for Small Nanocrystals; 2.2.1 Hydrogenated Silicon Nanocrystals; 2.2.2 Oxidized Silicon Nanocrystals; 2.2.3 Doped Silicon Nanocrystals; 2.2.3.1 Single-Doped Silicon Nanocrystals; 2.2.3.2 Codoped Silicon Nanocrystals; 2.2.4 Silicon Nanocrystals Embedded in a SiO2 Matrix; 2.3 Pseudopotential Calculations for Large Nanocrystals; 2.3.1 Effective Optical Gap 327 $a2.3.2 Radiative Lifetime2.3.3 Linear Optical Absorption; 2.3.3.1 Interband Absorption; 2.3.3.2 Intraband Absorption; 2.3.3.3 Excited State Absorption; 2.3.4 Third-Order Nonlinear Optical Properties; 2.3.5 Quantum-Confined Stark Effect in Si Nanocrystals; References; 3 Optical Properties of Intrinsic and Shallow Impurity-Doped Silicon Nanocrystals; 3.1 Introduction; 3.2 PL Properties of Intrinsic Silicon Nanocrystals; 3.2.1 Fundamental Properties; 3.2.2 Effect of Size and Shape Distribution on the PL Bandwidth; 3.2.3 Resonant Quenching of PL Band Due to Energy Transfer 327 $a3.2.4 PL Quantum Efficiency of Intrinsic Si Nanocrystals3.3 Shallow Impurity-Doped Si Nanocrystals; 3.3.1 Preparation of Impurity-Doped Si Nanocrystals; 3.3.2 PL from B-Doped Si Nanocrystals; 3.3.3 PL from P-Doped Si Nanocrystals; 3.3.4 Electron Spin Resonance Studies of Shallow Impurity-Doped Si Nanocrystals; 3.3.5 Location of Dopant Atoms; 3.4 P and B Codoped Si Nanocrystals; 3.4.1 PL Properties of P and B Codoped Si Nanocrystals; 3.4.2 PL Lifetime of P and B Codoped Si Nanocrystals; 3.4.3 Codoped But Not Compensated Si Nanocrystals; 3.5 Summary; References 327 $a4 Electrical Transport Mechanisms in Ensembles of Silicon Nanocystallites4.1 Introduction; 4.2 Background; 4.2.1 Basic Concepts Associated with Transport and Quantum Dots; 4.2.2 Previous Studies of Transport in Systems of Si; 4.3 Experimental Details; 4.4 Experimental Results and Their Interpretation; 4.4.1 The Low-x Regime; 4.4.2 The Low-x to Intermediate-x Transition Regime; 4.4.3 The Intermediate-x Regime; 4.4.4 The Percolation Threshold Regime; 4.4.5 The High-x Regime; 4.5 Discussion and Overview; References; 5 Thermal Properties and Heat Transport in Silicon-Based Nanostructures 327 $a5.1 Introduction5.2 Thermal Conductivity in Bulk Solids and Nanostructures; 5.2.1 Kinetic Theory: Thermal Properties and Heat Flow; 5.2.2 Lattice Thermal Conductivity; 5.2.3 Electronic Thermal Conductivity; 5.3 Measurements of Thermal Conductivity in Nanostructures; 5.3.1 The 3? Method; 5.3.2 In-Plane Thermal Conductivity Measurements; 5.3.3 Pump-Probe and Other Optical Measurements; 5.3.4 Raman Scattering and Thermal Conductivity; 5.4 Thermal Properties of Si-Based Nanostructures; 5.4.1 Two- and One-Dimensional Si Nanostructures: Si-on-Insulator and Si Nanowires 327 $a5.4.2 Epitaxially Grown Si/SiGe Nanostructures: Superlattices and Cluster Multilayers 330 $aThis unique collection of knowledge represents a comprehensive treatment of the fundamental and practical consequences of size reduction in silicon crystals.This clearly structured reference introduces readers to the optical, electrical and thermal properties of silicon nanocrystals that arise from their greatly reduced dimensions. It covers their synthesis and characterization from both chemical and physical viewpoints, including ion implantation, colloidal synthesis and vapor deposition methods. A major part of the text is devoted to applications in microelectronics as well as photonics 606 $aNanosilicon 606 $aSilicon crystals 615 0$aNanosilicon. 615 0$aSilicon crystals. 676 $a661.0683 676 $a661.0683 22 701 $aPavesi$b Lorenzo$0283736 701 $aTuran$b Rasit$01605721 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 801 2$bCaOLU 906 $aBOOK 912 $a9910831077303321 996 $aSilicon nanocrystals$93931121 997 $aUNINA