LEADER 05106nam 2200505 450 001 9910831029603321 005 20230511103056.0 010 $a1-119-81139-2 010 $a1-119-81138-4 035 $a(MiAaPQ)EBC7192102 035 $a(Au-PeEL)EBL7192102 035 $a(CKB)26094844000041 035 $a(EXLCZ)9926094844000041 100 $a20230511d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe technology of discovery $eradioisotope thermoelectric generators and thermoelectric technologies for space exploration /$fDavid Frederich Woerner 210 1$aHoboken, New Jersey :$cWiley,$d[2023] 210 4$dİ2023 215 $a1 online resource (381 pages) 225 1 $aJPL space science and technology series 311 08$aPrint version: Woerner, David Friedrich The Technology of Discovery Newark : John Wiley & Sons, Incorporated,c2023 9781119811367 320 $aIncludes bibliographical references and index. 327 $aIntro -- Table of Contents -- Title Page -- Copyright Page -- Foreward -- Note From the Series Editor -- Preface -- Authors -- Reviewers -- Acknowledgments -- Glossary -- List of Acronyms and Abbreviations -- 1 The History of the Invention of Radioisotope Thermoelectric Generators (RTGs) for Space Exploration -- References -- 2 The History of the United States's Flight and Terrestrial RTGs -- 2.1 Flight RTGS -- 2.2 Unflown Flight RTGs -- 2.3 Terrestrial RTGs -- 2.4 Conclusion -- References -- 3 US Space Flights Enabled by RTGs -- 3.1 SNAP?3B Missions (1961) -- 3.2 SNAP?9A Missions (1963-1964) -- 3.3 SNAP?19 Missions (1968-1975) -- 3.4 SNAP?27 Missions (1969-1972) -- 3.5 Transit?RTG Mission (1972) -- 3.6 MHW?RTG Missions (1976-1977) -- 3.7 GPHS?RTG Missions (1989-2006) -- 3.8 MMRTG Missions: (2011?Present (2021)) -- 3.9 Discussion of Flight Frequency -- 3.10 Summary of US Missions Enabled by RTGs -- References -- 4 Nuclear Systems Used for Space Exploration by Other Countries -- 4.1 Soviet Union1 -- 4.2 China -- References -- 5 Nuclear Physics, Radioisotope Fuels, and Protective Components -- 5.1 Introduction -- 5.2 Introduction to Nuclear Physics -- 5.3 Historic Radioisotope Fuels -- 5.4 Producing Modern PuO2 -- 5.5 Fuel, cladding, and encapsulations for modern -- 5.6 Summary -- References -- 6 A Primer on the Underlying Physics in Thermoelectrics -- 6.1 Underlying Physics in Thermoelectric Materials -- 6.2 Thermoelectric Theories and Limitations -- 6.3 Thermal Conductivity and Phonon Scattering -- References -- 7 End?to?End Assembly and Pre?flight Operations for RTGs -- 7.1 GPHS Assembly -- 7.2 RTG Fueling and Testing -- 7.3 RTG Delivery, Spacecraft Checkout, and RTG Integration for Flight -- References -- 8 Lifetime Performance of Spaceborne RTGs -- 8.1 Introduction -- 8.2 History of RTG Performance at a Glance. 327 $a8.3 RTG Performance by Generator Type -- References -- 9 Modern Analysis Tools and Techniques for RTGs -- 9.1 Analytical Tools for Evaluating Performance Degradation and Extrapolating Future Power -- 9.2 Effects of Thermal Inventory on Lifetime Performance -- 9.3 (Design) Life Performance Prediction -- 9.4 Radioisotope Power System Dose Estimation Tool (RPS?DET) -- References -- 10 Advanced US RTG Technologies in Development -- 10.1 Introduction -- 10.2 Skutterudite?based Thermoelectric Converter Technology for a Potential MMRTG Retrofit -- 10.3 Next Generation RTG Technology Evolution -- 10.4 Considerations for Emerging Commercial RTG Concepts -- References -- Index -- End User License Agreement. 330 $a"Radioisotope Thermoelectric Generators (RTGs) produce continuous, quiet electrical power for spacecraft exploring our solar system and the space beyond. These generators use thermoelectric technologies to convert heat produced by the natural decay of radioisotopes into electrical power. Two leading thermoelectric material systems have emerged as contenders to supplant currently available thermoelectric materials. Each is at a differing level of readiness for flight. Both are poised to emerge from the laboratory and be brought to production for newer, potentially more powerful RTGs. This should enable spacecraft and mission designers to save on mass and radioisotope fuel consumption. In addition, one of the technologies is so efficient and powerful as to enable new mission types."--$cProvided by publisher. 410 0$aJPL space science and technology series. 606 $aThermoelectric generators 606 $aRadioisotopes in astronautics 606 $aThermoelectric apparatus and appliances 615 0$aThermoelectric generators. 615 0$aRadioisotopes in astronautics. 615 0$aThermoelectric apparatus and appliances. 676 $a621.31243 700 $aWoerner$b David Friedrich$01628619 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910831029603321 996 $aThe technology of discovery$93965835 997 $aUNINA