LEADER 05345nam 2200637 450 001 9910830977703321 005 20230721033313.0 010 $a1-281-94715-6 010 $a9786611947156 010 $a3-527-62317-5 010 $a3-527-62318-3 035 $a(CKB)1000000000555366 035 $a(EBL)481447 035 $a(SSID)ssj0000221527 035 $a(PQKBManifestationID)11201788 035 $a(PQKBTitleCode)TC0000221527 035 $a(PQKBWorkID)10161900 035 $a(PQKB)10576264 035 $a(MiAaPQ)EBC481447 035 $a(OCoLC)299043667 035 $a(EXLCZ)991000000000555366 100 $a20160819h20082008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPhysics and applications of CVD diamond /$fSatoshi Koizumi, Christoph Nebel, and Milos Nesladek 210 1$aWeinheim, Germany :$cWILEY-VCH Verlag GmbH & Co. KGaA,$d2008. 210 4$dİ2008 215 $a1 online resource (376 p.) 300 $aDescription based upon print version of record. 311 $a3-527-40801-0 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aPhysics and Applications of CVD Diamond; Contents; Preface; 1 Future Perspectives for Diamond; 1.1 The Status Diamond and the Working Diamond; 1.2 On Diamond's Future; 1.3 The Electron in Carbon Country; 1.4 Social Contexts: Twenty-First Century Needs; 1.5 The Biomedical and Life Sciences Context; 1.6 Fusion: Opportunity and Challenge; 1.7 Extending the Information Technologies; 1.8 Can the Quantum be Tamed?; 1.9 Conclusions: Beyond Those Niche Applications; 2 Growth and Properties of Nanocrystalline Diamond Films; 2.1 Introduction; 2.2 Growth; 2.3 Raman Spectra of NCD and UNCD Films 327 $a2.4 Optical Properties of UNCD and B-NCD Films2.5 Doping and Transport Measurements; 2.6 Conclusions; 3 Chemical Vapor Deposition of Homoepitaxial Diamond Films; 3.1 Introduction and Historical Background; 3.1.1 Diamond - A Superior Semiconducting Material; 3.1.2 Low-Pressure Chemical Vapor Deposition; 3.1.3 Homoepitaxial Diamond Films; 3.2 Effects of Process Parameters on Homoepitaxial Diamond Film Quality; 3.2.1 Methane Concentration; 3.2.2 Substrate Temperature; 3.2.3 Total Gas Pressure; 3.2.4 Crystal Orientation; 3.2.5 Misorientation Angle; 3.2.6 Substrate Quality and Preparation Method 327 $a3.2.7 Impurity Doping into Homoepitaxial Diamond3.3 Homoepitaxial Diamond Growth by High-Power Microwave-Assisted Chemical Vapor Deposition; 3.3.1 Growth Conditions; 3.3.2 Growth Rate; 3.3.3 Surface Morphology; 3.3.4 Optical Properties; 3.3.5 Boron Doping; 3.3.6 Nitrogen Doping; 3.3.7 Large Area Deposition; 3.4 Conclusions and Perspectives; 4 Heteroepitaxy of Diamond; 4.1 Cubic Boron Nitride; 4.2 Silicon and Silicon Carbide; 4.3 Nickel and Cobalt; 4.4 Platinum; 4.5 Iridium; 4.6 Recent Progress in Heteroepitaxy of Diamond on Iridium; 4.7 Other Trials for Heteroepitaxy of Diamond; 4.8 Summary 327 $a5 Electrochemical Properties of Undoped Diamond5.1 Introduction; 5.2 Surface Electronic Properties of Diamond Covered with Adsorbates; 5.2.1 Contact Potential Difference (CPD) Experiments; 5.2.2 Current-Voltage (IV) Properties; 5.2.3 Capacitance-Voltage (CV) Experiments; 5.2.4 Two Dimensional Properties of a Perfectly H-Terminated Diamond Surface; 5.2.5 In-Plane Capacitance-Voltage Properties of Al on H-Terminated Diamond; 5.2.6 Hole Carrier Propagation and Scattering in the Surface Layer; 5.3 Surface Electronic Properties of Diamond in Electrolyte Solutions 327 $a5.3.1 Redox Couple Interactions with Undoped H-Terminated CVD Diamond5.3.2 Electrochemical Exchange Reactions of H-Terminated Diamond with Electrolytes and Redox Couples; 5.3.3 Ion Sensitive Field Effect Transistor (ISFET) from Undoped CVD Diamond; 5.4 Discussion and Conclusions; 5.5 Summary; 6 Biosensors from Diamond; 6.1 Introduction; 6.2 Materials and Methods; 6.2.1 CVD Diamond Growth, Surface Modifications and Contact Deposition; 6.2.2 Photochemical Surface Modification of Undoped Diamond; 6.2.3 Electrochemical Surface Functionalization 327 $a6.2.4 HeteroBifunctional CrossLinking and DNA Attachment 330 $aHere, leading scientists report on why and how diamond can be optimized for applications in bioelectronic and electronics. They cover such topics as growth techniques, new and conventional doping mechanisms, superconductivity in diamond, and excitonic properties, while application aspects include quantum electronics at room temperature, biosensors as well as diamond nanocantilevers and SAWs.Written in a review style to make the topic accessible for a wider community of scientists working in interdisciplinary fields with backgrounds in physics, chemistry, biology and engineering, this is e 606 $aChemical vapor deposition 606 $aDiamonds, Artificial 615 0$aChemical vapor deposition. 615 0$aDiamonds, Artificial. 676 $a621.38152 700 $aKoizumi$b Satoshi$01675364 702 $aNebel$b Christoph 702 $aNesladek$b Milos 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830977703321 996 $aPhysics and applications of CVD diamond$94040760 997 $aUNINA