LEADER 10838nam 2200505 450 001 9910830967703321 005 20230611131915.0 010 $a3-527-83404-4 010 $a3-527-83403-6 035 $a(MiAaPQ)EBC7237083 035 $a(Au-PeEL)EBL7237083 035 $a(OCoLC)1376931654 035 $a(EXLCZ)9926435295500041 100 $a20230611d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSupramolecular nanotechnology$hVolume 3. $eadvanced design of self-assembled functional materials /$fedited by Omar Azzaroni and Martin Conda-Sheridan 210 1$aWeinheim, Germany :$cWILEY-VCH GmbH,$d[2023] 210 4$d©2023 215 $a1 online resource (1343 pages) 311 08$aPrint version: Azzaroni, Omar Supramolecular Nanotechnology Newark : John Wiley & Sons, Incorporated,c2023 9783527349487 320 $aIncludes bibliographical references and index. 327 $aCover -- Volume 1 -- Title Page -- Copyright -- Contents -- Preface -- Foreword -- Chapter 1 Complex Helical Self?Organizations and Functions on All Length Scales. From Art, Architecture, Early Machines and Natural Phenomena to Biological and Synthetic Assemblies and Macromolecules -- 1.1 Definition of Self?Organizations and Complex Systems -- 1.1.1 Early Examples of Helical Self?Organizations in Art, Architecture, Early Machines, and Natural Phenomena -- 1.1.2 Examples of Helical Self?Organizations of Natural Phenomena. Tornado's Spiral or Vortex, Hurricanes, Typhoons, Tropical Cyclones, Whirlpool, and Aurora Borealis -- 1.1.3 Early Examples of Helical Machines: Leonardo's Aerial Screw and Archimedes Water Screw -- 1.2 Helical Assemblies in Biology -- 1.2.1 The Pauling-Corey Hydrogen?Bonded ??Helix of Proteins and the Failure of Ribbon?Like Model of Bamford, Bragg, Kendrew, and Perutz -- 1.2.2 The Coiled?Coil Structure of Proteins by Pauling and Crick -- 1.2.3 The Structure of Globular Proteins Hemoglobin and Myoglobin is Self?Organized from ??Helices -- 1.2.4 The Story of the Discovery of the DNA Double Helix -- 1.2.5 The Structure and the Mechanism of Self?Organization of Tobacco Mosaic Virus (TMV) -- 1.3 Biology Leading the Way to Synthetic Helical Macromolecules and Their Self?Organizations -- 1.3.1 Polytetrafluoroethylene, Polyacetylenes, Poly(isocyanide)s, and Poly(carbodiimide)s -- 1.3.2 Helical Self?Organizable Dendronized Covalent and Supramolecular Macromolecules -- 1.3.2.1 Helical Self?Organization Mediated by Ionic Interactions Provide High Ionic Conductivity -- 1.3.2.2 Bundles of Helical Supramolecular Columns Self?Organize into Helical Superlattices -- 1.3.2.3 Helical Self?Organizations Mediated by Donor-Acceptor Interactions Generate Self?Repairing Electronic Systems. 327 $a1.3.2.4 Transforming Irreversible Intramolecular Electrocyclization Accompanied by Chain Cleavage of Cis?PPA into Thermally Reversible Cis-Cisoidal to Cis-Transoidal Isomerization of Helical Dendronized PPA Induces a New Helix-Helix Transition and a General Methodology to Design Molecular Machines -- 1.3.2.5 Helical Self?Organization of Homochiral Dendritic Dipeptides Provides Access to the First Synthetic Aquaporin?Like (AQP) Channel for Water Transport -- 1.3.2.6 Programming Supramolecular Helical Polymerization of Dendritic Dipeptides with all Stereochemical Permutations of the Dipeptide Provides a Rational for Biological Homochirality -- 1.3.2.7 The Transplant of Quasi?equivalency from the Self?Assembly of Icosahedral Viruses to the Self?Assembly of Dendrons and Dendronized Polymers Inspired Self?Organization of Helical Monodisperse Spheres, Quasicrystals, and Frank-Kasper Phases -- 1.3.3 Self?Interrupted Synthesis (SIS), Self?Interrupted Polymerization (SIP), Self?Accelerated Polymerization (SAP), and Self?Interrupted Living Polymerization (SILP) -- 1.3.3.1 Self?Organization of Constitutional Isomeric Dendritic Dipeptides Yields Hollow Columns and Hollow Spheres -- 1.3.4 The Transplant of Helical Diffraction Theory from Biology to Self?Organizable Dendronized Supramolecular and Covalent Polymers and its Implications on Supramolecular Dendrimers -- 1.3.4.1 Hat?Shaped Dendrimers Deracemize in Their Helical Hexagonal Crystal State Producing Isotactic Supramolecular Polymers from Atactic Polymers -- 1.3.4.2 The Cogwheel Mechanism of Helical Self?Organization and Deracemization in the Crystal State -- 1.3.5 Arrangements of Helical Columns Exceeding the Complexity of Biological Coiled?Coils by Supramolecular Orientational Memory Effect. 327 $a1.4 From Amphiphilic Janus Dendrimers, Amphiphilic Janus Glycodendrimers, and One?Component Multifunctional Sequence?Defined Ionizable Amphiphilic Janus Dendrimers to Targeted Delivery of mRNA -- 1.4.1 Amphiphilic Janus Dendrimers -- 1.4.1.1 Amphiphilic Janus Glycodendrimers and Their Self?Assembly into Glycodendrimersomes -- 1.4.1.2 Janus Dendrimers and Glycodendrimers Co?assemble with Bacterial and Human Cells into Hybrid Cells -- 1.4.1.3 Endocytosis of Living Bacteria by Janus Dendrimers?Derived Dendrimersomes -- 1.4.1.4 Disassembly of Dendrimersomes into Janus Dendrimers and Re?Assembly of into Dendrimersomes -- 1.4.1.5 Encapsulation of Hydrophobic Components in Dendrimersomes and Decoration of Their Surface with Proteins and Nucleic Acids -- 1.4.1.6 One?Component Multifunctional Sequence?Defined Ionizable Amphiphilic Janus Dendrimers (IAJDs) for the Delivery of mRNA -- 1.4.1.7 The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One?Component Ionizable Amphiphilic Janus Dendrimers in Targeted mRNA Delivery Activity -- 1.4.1.8 Self?Assembly of Amphiphilic Janus Dendrimers into Onion?Like Dendrimersomes -- 1.4.2 Synthesis of Dendrimers and Janus Dendrimers by Thio-Bromo Click -- 1.5 Will Synthetic Chemistry Ever Equal or Even Exceed the Complexity and Precision of Nanoarchitectures from Biology? -- Acknowledgment -- References -- Chapter 2 Recent Advances in Porphyrin? and Phthalocyanine?based 2D?MOFs and 2D?COFs for Energy Applications -- 2.1 Introduction -- 2.2 Synthesis -- 2.2.1 Porphyrin/Phthalocyanine Derivatives in MOFs Systems -- 2.2.2 Porphyrin/Phthalocyanine Derivatives in COFs Systems -- 2.2.3 General Synthesis Strategies of 2D?MOFs and 2D?COFs -- 2.3 Basics of Water?splitting and Supercapacitor Devices -- 2.3.1 Water?splitting -- 2.3.2 Types of Energy Storage Electrode Materials. 327 $a2.4 2D?MOF? and 2D?COF?based Catalysts for Water?splitting -- 2.4.1 HER Catalysts Based on Porphyrin and Phthalocyanine 2D?MOFs/2D?COFs -- 2.4.2 Porphyrin and Phthalocyanine Based 2D?MOFs/2D?COFs for OER -- 2.5 2D?MOFs/2D?COFs for Supercapacitors -- 2.6 Summary and Outlook -- References -- Chapter 3 Controlled Supramolecular Self?assembly in MOF Confined Spaces -- 3.1 Introduction -- 3.1.1 Encapsulation of Functional Molecules within MOFs -- 3.2 MOF?Driven Self?assembly of Supramolecular Assemblies -- 3.2.1 Design, Synthesis and Functionality of the MOF Nanoreactors -- 3.2.2 Synthesis of Supramolecular Assemblies -- 3.2.2.1 Subnanometer Metal Clusters and SACs -- 3.2.2.2 Organic Polymers -- 3.2.2.3 Supramolecular Coordination Compounds (SCCs) -- 3.3 Perspectives: Potential Unique Applications of Supramolecular Assemblies within MOFs -- 3.3.1 Enzimatic Catalysis -- 3.3.2 Environmental Remediation -- 3.4 Conclusion -- Acknowledgments -- References -- Chapter 4 Supramolecular Materials from Porphyrins and Phthalocyanines -- 4.1 Introduction -- 4.2 Assembly by Host-Guest Interactions -- 4.3 Assembly by Balancing Opposing Interactions -- 4.3.1 Liquid?Crystalline Phthalocyanines -- 4.3.2 Supramolecular Polymers -- 4.4 Assembly Using Chirality as a Tool -- 4.5 Directed Self?Assembly -- 4.6 Outlook -- Acknowledgments -- References -- Chapter 5 Molecular Design and Excited State Engineering for Supramolecular H2 Evolution Catalysts -- 5.1 Introduction -- 5.2 Restricted Exciton Lifetime - Enhanced Aggregation -- 5.2.1 Self?Assembled Photocatalysts Consisting of Perylene Monoimide (PMI) -- 5.2.2 Self?Assembled Photocatalysts Consisting of Perylene Diimide (PDI) -- 5.2.3 Self?Assembled Photocatalysts Based on Zinc Porphyrin Derivatives -- 5.3 Prolonged Exciton Lifetime - Enhanced Intersystem Crossing Through Salt Addition. 327 $a5.3.1 Prolonged Exciton Lifetime - Enhanced Triplet Formation by Iodide Addition -- 5.3.2 Prolonged Exciton Lifetime - Octupolar Building Block for Seawater Splitting -- 5.4 Outlook -- References -- Chapter 6 Constitutional and Configurational Isomerism within Peptide/?-Electron Self?Assembling Molecules and Their Impacts on Supramolecular Nanostructures -- 6.1 Introduction -- 6.1.1 Constitutional Isomerism -- 6.1.2 Configurational Isomers -- 6.2 Conclusion -- References -- Chapter 7 Self?assembly Templated by Radical-Radical Interactions -- 7.1 Introduction -- 7.2 Background -- 7.2.1 History of Organic Radicals -- 7.2.2 Supramolecular Stabilization of Radical Dimers -- 7.2.3 Molecular Stabilization of Radical Dimers -- 7.3 Applications -- 7.3.1 Supramolecular Polymer Construction -- 7.3.2 Other Applications -- 7.4 Conclusion -- References -- Chapter 8 Molecular Engineering of Bio?Assemblies: Prospects and Design Rules for Sustainable, Wearable Electromechanical Materials -- 8.1 Introduction: Biological Self?Assembly -- 8.2 Piezoelectricity: Functional Self?Assembly -- 8.2.1 Basic Building Blocks: Amino Acids -- 8.2.2 Peptide Crystals and Nanostructures -- 8.2.2.1 Self?Assembled Monolayers as Novel Piezoelectrics -- 8.2.2.2 Diphenylalanine as a Key Piezoelectric Peptide Motif -- 8.2.3 Piezoelectric Protein Assemblies -- 8.3 Conclusions and Outlook -- References -- Chapter 9 Supramolecular Interfacial Nanoarchitectonics -- 9.1 Introduction: The Importance of Supramolecular Chemistry at the Interface from the Perspective of the Secrets of Living Organisms -- 9.2 Molecular Recognition at the Interface -- 9.3 Nanoarchitectonics Fabrication at Interfaces -- 9.4 New Role of Interfaces: Connecting the Nano and Macro -- 9.5 New Developments in Molecular Recognition. 327 $a9.6 Conclusion: Can We Say that the Function of Organic Molecules Has Been Sufficiently Investigated?. 606 $aNanotechnology 606 $aOrganic electronics 615 0$aNanotechnology. 615 0$aOrganic electronics. 676 $a620.5 702 $aAzzaroni$b Omar 702 $aConda-Sheridan$b Martin 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830967703321 996 $aSupramolecular nanotechnology$93933352 997 $aUNINA