LEADER 05182nam 22006254a 450 001 9910830965703321 005 20230617035350.0 010 $a1-280-52059-0 010 $a9786610520596 010 $a3-527-60572-X 010 $a3-527-60553-3 035 $a(CKB)1000000000376392 035 $a(EBL)481634 035 $a(OCoLC)68940582 035 $a(SSID)ssj0000159739 035 $a(PQKBManifestationID)11155614 035 $a(PQKBTitleCode)TC0000159739 035 $a(PQKBWorkID)10181775 035 $a(PQKB)10556167 035 $a(MiAaPQ)EBC481634 035 $a(EXLCZ)991000000000376392 100 $a20060907d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aFunctional synthetic receptors$b[electronic resource] /$fThomas Schrader, Andrew D. Hamilton (eds.) 210 $aWeinheim $cWiley-VCH$dc2005 215 $a1 online resource (442 p.) 300 $aDescription based upon print version of record. 311 $a3-527-30655-2 320 $aIncludes bibliographical references and index. 327 $aFunctional Synthetic Receptors; Table of Contents; Preface; List of Contributors; 1 Artificial (Pseudo)peptides for Molecular Recognition and Catalysis; 1.1 Introduction; 1.2 Recognition of Biological Targets by Pseudo-peptides; 1.2.1 Introduction; 1.2.2 Polyamides as Sequence-specific DNA-minor-groove Binders; 1.2.3 Peptide Nucleic Acids; 1.2.4 Protein Recognition by (Pseudo)peptides; 1.3 Synthetic (Pseudo)peptide-based Supermolecules: From Structure to Function; 1.3.1 Catalytic (Pseudo)peptides; 1.3.2 (Pseudo)peptides Altering Membrane Permeability 327 $a1.3.3 Nanoparticle- and Dendrimer-based Functional (Pseudo)peptides1.4 Combinatorial Selection of Functional (Pseudo)peptides; 1.5 Conclusions; References; 2 Carbohydrate Receptors; 2.1 Introduction; 2.2 Carbohydrate Receptors Employing Noncovalent Interactions; 2.2.1 Recognition in Organic Solvents; 2.2.2 Recognition in Two-phase Systems; 2.2.3 Carbohydrate Recognition in Water; 2.3 Receptors Employing B-O Bond Formation; 2.3.1 Carbohydrate Recognition in Water; 2.3.2 Carbohydrate Recognition in Water; References; 3 Ammonium, Amidinium, Guanidinium, and Pyridinium Cations; 3.1 Introduction 327 $a3.2 Ammonium Cations3.2.1 New Receptor Structures; 3.2.2 Theoretical Investigations; 3.2.3 New Functions; 3.2.4 Peptide and Protein Recognition; 3.2.5 Conclusion and Outlook; 3.3 Amidinium Cations; 3.3.1 Introduction; 3.3.2 Artificial Receptors; 3.3.3 Conclusion; 3.4 Guanidinium Cations; 3.4.1 Introduction; 3.4.2 Artificial Receptors; 3.4.3 Conclusion; 3.5 Pyridinium Cations; 3.5.1 Introduction; 3.5.2 Artificial Receptors; 3.5.3 Conclusion; 3.6 Conclusions and Outlook; References; 4 Artificial Pyrrole-based Anion Receptors; 4.1 Introduction; 4.2 Anions in Biological Systems 327 $a4.3 Cationic Pyrrole-based Receptors4.3.1 Cyclic Receptors; 4.3.2 Linear Receptors; 4.4 Neutral Pyrrole-based Anion Receptors; 4.4.1 Cyclic Receptors; 4.4.2 Linear Receptors; 4.5 Anion Carriers in Transport Applications; 4.6 Anion Sensing; 4.7 Guanidinium-based Anion Receptors; 4.8 Amide-based Anion Receptors; 4.9 Urea-based Anion Receptors; 4.10 Conclusions; Acknowledgment; References; 5 Molecular Containers in Action; 5.1 Introduction; 5.2 Variety of Molecular Containers; 5.3 Chemistry Inside Capsules; 5.3.1 Observing Unusual Species Through Encapsulation 327 $a5.3.2 Changing Reaction Rates by Encapsulation5.3.3 Encapsulated Reagents; 5.4 Storage of Information Inside Capsules; 5.5 Materials and Sensors by Encapsulation; 5.5.1 Molecular Containers as Sensors and Sensing Materials; 5.5.2 Supramolecular Polymers; 5.6 Biologically Relevant Encapsulation; 5.6.1 Entrapment of Biologically Active Guests; 5.6.2 Encapsulation of Gases; 5.7 Concluding Remarks; Acknowledgment; References; 6 Formation and Recognition Properties of Dynamic Combinatorial Libraries; 6.1 Introduction; 6.2 Covalent Interactions Used in DCC Design 327 $a6.2.1 Acyl Hydrazone and Imine Exchange 330 $aA timely overview of this rapidly-expanding topic, covering the most important classes of compounds and incorporating the latest literature. With its application-oriented approach, this book is the first to emphasize current and potential applications, extending to such fields as materials science, bioorganic chemistry, medicinal chemistry, and organic synthesis. In the biological context in particular, the book clarifies which receptor systems work well in water or better under physiological conditions.From the contents:* Amino Acid, Peptid and Protein Receptors* Carbohydrate Rece 606 $aSupramolecular chemistry 606 $aCell receptors 615 0$aSupramolecular chemistry. 615 0$aCell receptors. 676 $a547.1226 686 $a35.53$2bcl 701 $aSchrader$b Thomas$0100496 701 $aHamilton$b Andrew D$0150665 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830965703321 996 $aFunctional synthetic receptors$93933340 997 $aUNINA