LEADER 08538nam 2200553 450 001 9910830898303321 005 20230807193800.0 010 $a3-527-84048-6 010 $a3-527-84047-8 010 $a3-527-84046-X 035 $a(MiAaPQ)EBC7268735 035 $a(Au-PeEL)EBL7268735 035 $a(BIP)083845332 035 $a(EXLCZ)9927489930100041 100 $a20230807d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aInterface Engineering in Organic Field-Effect Transistors /$fXuefeng Guo and Hongliang Chen 205 $aFirst edition. 210 1$aWeinheim, Germany :$cWILEY-VCH GmbH,$d[2023] 210 4$dİ2023 215 $a1 online resource (273 pages) 311 08$aPrint version: Guo, Xuefeng Interface Engineering in Organic Field-Effect Transistors Newark : John Wiley & Sons, Incorporated,c2023 9783527351459 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Author Biographies -- List of Acronyms and Abbreviations -- Chapter 1 Introduction -- 1.1 Different Interfaces in OFETs -- 1.2 Brief Historic Overview of Interface Engineering in OFETs -- 1.3 Scope of the Book -- Chapter 2 Interfacial Modification Methods -- 2.1 Noncovalent Modification Methods -- 2.1.1 Charge Insertion Layer at the Electrode Surface -- 2.1.2 Dielectric Surface Passivation Methods -- 2.2 Covalent Modification Methods -- 2.2.1 SAM Modification of Electrodes -- 2.2.2 SAM Modification of Dielectrics -- 2.2.2.1 SAM/SiO2 Dielectrics -- 2.2.2.2 SAM/High?k Dielectrics -- 2.2.2.3 Self?Assembled Monolayer Field?Effect Transistors (SAMFETs) -- 2.3 Efforts in Developing New Methods -- Chapter 3 Semiconductor/Semiconductor Interface -- 3.1 Influence of Additives on a Material's Nucleation and Morphology -- 3.1.1 Solvent Additives -- 3.1.2 Nucleating Agents -- 3.1.3 Template?Mediated Crystallization -- 3.1.4 Blending with Insulating Polymers -- 3.1.5 Blending with Polymer Elastomer: Nanoconfinement Effect -- 3.2 Enhancing the Performance Through Semiconductor Heterojunctions -- 3.2.1 Planar Bilayer Heterostructures -- 3.2.2 Molecular?Level Heterojunction -- 3.2.3 Supramolecular Arrangement of the Heterojunctions -- 3.3 Integrating Molecular Functionalities into Electrical Circuits -- 3.3.1 Charge?Trapping?Induced Memory Effect -- 3.3.2 Photochromism?Induced Switching Effect -- Chapter 4 Semiconductor/Electrode Interface -- 4.1 Work Function Tuning for Better Contact -- 4.1.1 SAM Modification -- 4.1.2 Charge Insertion Layer Modification -- 4.1.3 Polymer?Based Electrodes -- 4.1.4 Carbon Nanomaterial?Based Electrodes -- 4.1.5 Covalent Bond Formation at the Molecular Level -- 4.2 Installing Switching Effects at Semiconductor/Electrode Interface. 327 $aChapter 5 Semiconductor/Dielectric Interface -- 5.1 Dielectric Modification to Tune Semiconductor Morphology -- 5.1.1 Dielectric Surface Energy Control -- 5.1.1.1 Modify with SAM -- 5.1.1.2 Surface Modification with Polymers -- 5.1.2 Dielectric Microstructure Design -- 5.1.2.1 Roughness Effect -- 5.1.2.2 Nano?fabrication Created Microstructure -- 5.1.2.3 Self?assembled Morphology of Dielectric -- 5.2 Eliminating Interfacial Traps -- 5.2.1 Dielectric Surface Passivation (Treatment) Methods -- 5.2.1.1 Polymer Encapsulation of Dielectrics -- 5.2.1.2 Gap Dielectrics -- 5.2.2 SAM/SiO2 Dielectrics -- 5.2.2.1 Provide Efficient Insulating Barrier Height -- 5.2.2.2 Control Surface Polarity and Carrier Density -- 5.2.3 SAM/High?k Dielectrics -- 5.2.3.1 Fundamentals of SAM?Modified High?k Dielectrics -- 5.2.3.2 SAM/High?k Hybrid Dielectrics for Flexible Substrate -- 5.2.4 Self?assembled Monolayer Field?Effect Transistors (SAMFETs) -- 5.2.4.1 Molecule Design for SAMFETs -- 5.2.4.2 Morphology Control of SAMFET -- 5.3 Integrating New Functionalities -- 5.3.1 Photoresponsive Dielectrics -- 5.3.2 Other External Stimuli?Responsive Dielectrics -- 5.3.2.1 Pressure Sensor -- 5.3.2.2 Thermal Sensor -- 5.3.2.3 Magnetic Sensor -- 5.3.2.4 Multifunctional Sensor -- 5.3.3 Integrating Memory Effect at the Dielectrics -- Chapter 6 Semiconductor/Environment Interface -- 6.1 Device Optimization to Improve Sensing Performance -- 6.1.1 Monolayer Functionalization -- 6.1.2 Bilayer Heterojunction Approach -- 6.1.3 Remote Floating Gate -- 6.2 OECT?Based and EGOFET?Based Sensors -- Chapter 7 Interfacing Organic Electronics with Biology -- 7.1 Integration of OFETs/OECTs with Nonelectrogenic Cells -- 7.2 Integration of Flexible Bioelectronics with Electrogenic Cells -- 7.3 Light/Cell/Device Interfaces -- Chapter 8 Concluding Remarks and Outlook -- 8.1 New Challenges in Molecular Design. 327 $a8.2 High?Quality OSC Films: Self?Assembly Control -- 8.3 High?Performance Scalable Flexible Optoelectronics -- 8.4 Exploration of Novel Structures: Organic/2D Heterostructures and Vertical Structures -- 8.5 Instability: Stability in Aqueous Media and Thermal Stability in Hygienic Applications -- 8.6 Multifunctional Sensor Systems -- References -- Index -- EULA. 330 8 $aInterface Engineering in Organic Field-Effect TransistorsSystematic summary of advances in developing effective methodologies of interface engineering in organic field-effect transistors, from models to experimental techniquesInterface Engineering in Organic Field-Effect Transistors covers the state of the art in organic field-effect transistors and reviews charge transport at the interfaces, device design concepts, and device fabrication processes, and gives an outlook on the development of future optoelectronic devices.This book starts with an overview of the commonly adopted methods to obtain various semiconductor/semiconductor interfaces and charge transport mechanisms at these heterogeneous interfaces. Then, it covers the modification at the semiconductor/electrode interfaces, through which to tune the work function of electrodes as well as reveal charge injection mechanisms at the interfaces.Charge transport physics at the semiconductor/dielectric interface is discussed in detail. The book describes the remarkable effect of SAM modification on the semiconductor film morphology and thus the electrical performance. In particular, valuable analyses of charge trapping/detrapping engineering at the interface to realize new functions are summarized.Finally, the sensing mechanisms that occur at the semiconductor/environment interfaces of OFETs and the unique detection methods capable of interfacing organic electronics with biology are discussed.Specific sample topics covered in Interface Engineering in Organic Field-Effect Transistors include:Noncovalent modification methods, charge insertion layer at the electrode surface, dielectric surface passivation methods, and covalent modification methodsCharge transport mechanism in bulk semiconductors, influence of additives on materials' nucleation and morphology, solvent additives, and nucleation agentsNanoconfinement effect, enhancing the performance through semiconductor heterojunctions, planar bilayer heterostructure, ambipolar charge-transfer complex, and supramolecular arrangement of heterojunctionsDielectric effect in OFETs, dielectric modification to tune semiconductor morphology, surface energy control, microstructure design, solution shearing, eliminating interfacial traps, and SAM/SiO2 dielectricsA timely resource providing the latest developments in the field and emphasizing new insights for building reliable organic electronic devices, Interface Engineering in Organic Field-Effect Transistors is essential for researchers, scientists, and other interface-related professionals in the fields of organic electronics, nanoelectronics, surface science, solar cells, and sensors. 606 $aInterfaces (Physical sciences) 606 $aOrganic field-effect transistors 610 $aChemistry, Physical And Theoretical 610 $aSemiconductors 610 $aScience 610 $aTechnology & Engineering 615 0$aInterfaces (Physical sciences) 615 0$aOrganic field-effect transistors. 676 $a530.417 700 $aGuo$b Xuefeng$01649011 702 $aChen$b Hongliang 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830898303321 996 $aInterface Engineering in Organic Field-Effect Transistors$93997509 997 $aUNINA