LEADER 05290nam 2200649Ia 450 001 9910830893203321 005 20230721005752.0 010 $a1-282-68885-5 010 $a9786612688850 010 $a0-470-61114-6 010 $a0-470-39373-4 035 $a(CKB)2550000000005867 035 $a(EBL)477655 035 $a(OCoLC)647848384 035 $a(SSID)ssj0000341447 035 $a(PQKBManifestationID)11284325 035 $a(PQKBTitleCode)TC0000341447 035 $a(PQKBWorkID)10389114 035 $a(PQKB)10078907 035 $a(MiAaPQ)EBC477655 035 $a(EXLCZ)992550000000005867 100 $a20090211d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPhotonic waveguides$b[electronic resource] $etheory and applications /$fAzzedine Boudrioua 210 $aLondon $cISTE ;$aHoboken, NJ $cWiley$d2009 215 $a1 online resource (342 p.) 225 1 $aISTE ;$vv.30 300 $aDescription based upon print version of record. 311 $a1-84821-027-2 320 $aIncludes bibliographical references and index. 327 $aPhotonic Waveguides; Table of Contents; Foreword; Acknowledgments; Introduction; Chapter 1. Optical Waveguide Theory; 1.1. Principles of optics; 1.1.1. Total reflection phenomenon; 1.1.2. Parallel-face plate; 1.2. Guided wave study; 1.2.1. General description; 1.2.2. Step index planar waveguide; 1.2.3. Graded index planar waveguide; 1.3. Channel waveguides; 1.3.1. Effective index method; 1.4. Light propagation in anisotropic media; 1.5. Bibliography; Chapter 2. Optical Waveguide Fabrication Techniques; 2.1. Optical waveguide fabrication techniques; 2.1.1. Thin film deposition techniques 327 $a2.1.2. Substitution techniques2.2. Integrated optic materials; 2.2.1. Glass; 2.2.2. Organic materials; 2.2.3. Dielectric materials; 2.2.4. Semiconductor materials; 2.2.5. SiO2/Si materials; 2.2.6. New non-linear crystals; 2.3. Bibliography; Chapter 3. Optical Waveguide Characterization Techniques; 3.1. Coupling techniques; 3.1.1. Transversal coupling; 3.1.2. Longitudinal coupling; 3.2. "m-lines" spectroscopy; 3.2.1. The experimental setup; 3.2.2. Experimental arrangement; 3.2.3. Measurement accuracy; 3.2.4. Theoretical study of the effective index Nm; 3.2.5. Waveguide parameter determination 327 $a3.3. Optical losses3.3.1. Optical losses origin; 3.3.2. Optical loss measurements; 3.3.3. Characterization in near-field microscopy of optical waveguides; 3.4. Bibliography; Chapter 4. Non-linear Effects in Integrated Optics; 4.1. General considerations; 4.2. Second harmonic generation; 4.2.1. Second harmonic generation in the volume; 4.2.2. Quasi-phase matching (QPM); 4.2.3. Fabrication of periodically poled structures; 4.3. Second harmonic generation within waveguides; 4.3.1. Overlap integral calculation; 4.4. Non-linear optical characterization of waveguides; 4.4.1. SHG setup 327 $a4.4.2. Second harmonic generation by reflection4.4.3. Second harmonic generation in waveguides; 4.5. Parametric non-linear optical effects; 4.5.1. Parametric amplification; 4.5.2. Optical parametric oscillation (OPO); 4.6. Laser sources based on non-linear optics; 4.7. Bibliography; Chapter 5. The Electro-optic Effect in Waveguides; 5.1. Introduction; 5.2. The electro-optic effect; 5.2.1. The case of LiNbO3; 5.3. The electro-optic effect in waveguides; 5.3.1. Analysis of the electric field distribution; 5.4. Electro-optic measurement techniques; 5.4.1. The Mach-Zehnder interferometer 327 $a5.4.2. The polarization change technique5.4.3. Angular displacement of guided modes (AnDiGM) technique; 5.5. Optical devices using the electro-optic effect; 5.5.1. Phase modulators; 5.5.2. Intensity modulators; 5.6. Integrated optic setups using the electro-optic effect; 5.6.1 Optimal design of the electrodes for integrated EO modulators; 5.6.2. Integrated EO phase modulator; 5.6.3. Integrated EO intensity modulator (Mach-Zehnder); 5.7. Modulation in optical networks: state-of-the-art; 5.8. Bibliography; Chapter 6. Photonic Crystal Waveguides; 6.1. Dispersion relation 327 $a6.1.1. Dispersion relation of an isotropic medium 330 $aThis book presents the principles of non-linear integrated optics. The first objective is to provide the reader with a thorough understanding of integrated optics so that they may be able to develop the theoretical and experimental tools to study and control the linear and non-linear optical properties of waveguides.The potential use of these structures can then be determined in order to realize integrated optical components for light modulation and generation. The theoretical models are accompanied by experimental tools and their setting in order to characterize the studied phenomenon. Th 410 0$aISTE 606 $aIntegrated optics 606 $aPhotonics 615 0$aIntegrated optics. 615 0$aPhotonics. 676 $a621.36/93 676 $a621.3693 686 $aZN 6285$2rvk 700 $aBoudrioua$b Azzedine$0875564 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830893203321 996 $aPhotonic waveguides$93997478 997 $aUNINA