LEADER 06556nam 22009133u 450 001 9910830891103321 005 20230124184421.0 010 $a1-118-62311-8 010 $a1-299-31519-4 010 $a0-470-39427-7 035 $a(CKB)2560000000100602 035 $a(EBL)700706 035 $a(SSID)ssj0000833628 035 $a(PQKBManifestationID)11501407 035 $a(PQKBTitleCode)TC0000833628 035 $a(PQKBWorkID)10936115 035 $a(PQKB)10065733 035 $a(MiAaPQ)EBC700706 035 $a(EXLCZ)992560000000100602 100 $a20140519d2013|||| u|| | 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMechanical Characterization of Materials and Wave Dispersion$b[electronic resource] 210 $aHoboken $cWiley$d2013 215 $a1 online resource (671 p.) 225 1 $aISTE ;$vv.79 300 $aDescription based upon print version of record. 311 $a1-84821-077-9 327 $aCover; Mechanics of Viscoelastic Materials and Wave Dispersion; Title Page; Copyright Page; Table of Contents; Preface; Acknowledgements; PART A. CONSTITUTIVE EQUATIONS OF MATERIALS; Chapter 1. Elements of Anisotropic Elasticity and Complements on Previsional Calculations; 1.1. Constitutive equations in a linear elastic regime; 1.1.1. Symmetry applied to tensors sijkl and cijkl; 1.1.2. Constitutive equations under matrix form; 1.2. Technical elastic moduli; 1.2.1. Tension tests with one normal stress component ?; 1.2.2. Shear test; 1.3. Real materials with special symmetries 327 $a1.3.1. Change of reference axes1.3.2. Orthotropic materials possess two orthogonal planes of symmetry; 1.3.3. Quasi-isotropic transverse (tetragonal) material; 1.3.4. Transverse isotropic materials (hexagonal system); 1.3.5. Quasi-isotropic material (cubic system); 1.3.6. Isotropic materials; 1.4. Relationship between compliance Sij and stiffness Cij for orthotropic materials; 1.5. Useful inequalities between elastic moduli; 1.5.1. Orthotropic materials; 1.5.2. Quasi-transverse isotropic materials; 1.5.3. Transverse isotropic, quasi-isotropic, and isotropic materials 327 $a1.6. Transformation of reference axes is necessary in many circumstances1.6.1. Practical examples; 1.6.2. Components of stiffness and compliance after transformation; 1.6.3. Remarks on shear elastic moduli Gii (ij = 23, 31, 12) and stiffness constants Cii (with i = 4, 5, 6); 1.6.4. The practical consequence of a transformation of reference axes; 1.7. Invariants and their applications in the evaluation of elastic constants; 1.7.1. Elastic constants versus invariants; 1.7.2. Practical utilization of invariants in the evaluation of elastic constants; 1.8. Plane elasticity 327 $a1.8.1. Expression of plane stress stiffness versus compliance matrix1.8.2. Plane stress stiffness components versus three-dimensional stiffness components; 1.9. Elastic previsional calculations for anisotropic composite materials; 1.9.1. Long fibers regularly distributed in the matrix; 1.9.2. Stratified composite materials; 1.9.3. Reinforced fabric composite materials; 1.10. Bibliography; 1.11. Appendix; Appendix 1.A. Overview on methods used in previsional calculation of fiber-reinforced composite materials; Chapter 2. Elements of Linear Viscoelasticity 327 $a2.1. Time delay between sinusoidal stress and strain2.2. Creep and relaxation tests; 2.2.1. Creep test; 2.2.2. Relaxation test; 2.2.3. Ageing and non-ageing viscoelastic materials; 2.2.4. Viscoelastic materials with fading memory; 2.3. Mathematical formulation of linear viscoelasticity; 2.3.1. Linear system; 2.3.2. Superposition (or Boltzmann's) principle; 2.3.3. Creep function in a functional constitutive equation; 2.3.4. Relaxation function in functional constitutive equations; 2.3.5. Properties of relaxation and creep functions 327 $a2.4. Generalization of creep and relaxation functions to tridimensional constitutive equations 330 $aDynamic tests have proven to be as efficient as static tests and are often easier to use at lower frequency. Over the last 50 years, the methods of investigating dynamic properties have resulted in significant advances. This book explores dynamic testing, the methods used, and the experiments performed, placing a particular emphasis on the context of bounded medium elastodynamics.The discussion is divided into four parts. Part A focuses on the complements of continuum mechanics. Part B concerns the various types of rod vibrations: extensional, bending, and torsional. Part C is devoted to mecha 410 0$aISTE 606 $aDispersion -- Experiments 606 $aEngineering instruments 606 $aMaterials -- Mechanical properties -- Experiments 606 $aStructural engineering -- Materials -- Experiments 606 $aWave motion, Theory of -- Experiments 606 $aViscoelastic materials$xMechanical properties$xMathematical models 606 $aFlexible structures$xVibration$xMathematical models 606 $aStructural engineering$xMathematical models$xMaterials 606 $aWave-motion, Theory of$xMathematics 606 $aDispersion$xMathematical models 606 $aWave equation 606 $aChemical & Materials Engineering$2HILCC 606 $aEngineering & Applied Sciences$2HILCC 606 $aMaterials Science$2HILCC 615 4$aDispersion -- Experiments. 615 4$aEngineering instruments. 615 4$aMaterials -- Mechanical properties -- Experiments. 615 4$aStructural engineering -- Materials -- Experiments. 615 4$aWave motion, Theory of -- Experiments. 615 0$aViscoelastic materials$xMechanical properties$xMathematical models 615 0$aFlexible structures$xVibration$xMathematical models 615 0$aStructural engineering$xMathematical models$xMaterials 615 0$aWave-motion, Theory of$xMathematics 615 0$aDispersion$xMathematical models 615 0$aWave equation 615 7$aChemical & Materials Engineering 615 7$aEngineering & Applied Sciences 615 7$aMaterials Science 676 $a620.1/1292 676 $a620.11 676 $a620.11292 700 $aChevalier$b Yvon$01638993 701 $aTuong$b Jean Vinh$0884192 801 0$bAU-PeEL 801 1$bAU-PeEL 801 2$bAU-PeEL 906 $aBOOK 912 $a9910830891103321 996 $aMechanical characterization of materials and wave dispersion$93981710 997 $aUNINA