LEADER 10504nam 2200589 450 001 9910830866303321 005 20240226112838.0 010 $a1-119-56447-6 010 $a1-119-56446-8 010 $a1-119-56448-4 035 $a(CKB)4100000011949004 035 $a(MiAaPQ)EBC6938205 035 $a(Au-PeEL)EBL6938205 035 $a(PPN)276011392 035 $a(EXLCZ)994100000011949004 100 $a20221105d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aCrustal magmatic system evolution $eanatomy, architecture, and physico-chemical processes /$fMatteo Masotta, Christoph Beier and Silvio Mollo, editors 210 1$aHoboken, New Jersey :$cAmerican Geophysical Union :$cWiley,$d[2021] 210 4$d©2021 215 $a1 online resource (254 pages) 225 1 $aGeophysical monograph 300 $aIncludes index. 311 $a1-119-56445-X 327 $aCover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Part I Architecture of Crustal Magmatic Systems -- Chapter 1 Geothermobarometry of Mafic and Ultramafic Xenoliths: Examples From Hualalai and Mauna Kea Volcanoes, Hawaii -- 1.1. Introduction -- 1.2. Geological and Petrological Background -- 1.3. Revised Geothermobarometry of Mauna Kea and Hualalai Xenoliths -- 1.3.1. Rationale and Data Selection -- 1.3.2. Temperature Estimates -- 1.3.3. Pressure Estimates -- 1.4. Discussion -- 1.4.1. Comparisons with Previous Estimates and Implications of the Results -- 1.4.2. Geobarometry of Xenoliths as One of the Links between Petrology and Geophysics -- 1.5. Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 2 Trace Element Geothermometry and Geospeedometry for Cumulate Rocks: Quantitative Constraints on Thermal and Magmatic Processes During Igneous Crust Formation -- 2.1. Introduction -- 2.2. A Trace Element Perspective for Decoding Thermal and Magmatic Records in Minerals -- 2.2.1. Equilibrium Exchange -- 2.2.2. Chemical Diffusion -- 2.3. Trace Element Geothermometry -- 2.3.1. Theoretical Basis -- 2.3.2. Trace Element Partitioning -- 2.3.3. Geothermometers for Mafic Cumulates -- 2.4. Trace Element Geospeedometry -- 2.4.1. Diffusion and Geospeedometry -- 2.4.2. Basic Idea of Geospeedometer Design -- 2.4.3. The Mg-REE Coupled Geospeedometer for Mafic Cumulates -- 2.5. A Case Study on Oceanic Crust Formation -- 2.6. Concluding Remarks -- Acknowledgments -- References -- Chapter 3 Magma Storage at Ocean Islands: Insights From Cape Verde -- 3.1. Introduction -- 3.2. The Cape Verde Archipelago -- 3.2.1. Geochronology of the Cape Verde Archipelago -- 3.2.2. The Geology of Santiago -- 3.2.3. The Geology of Fogo -- 3.2.4. The Geology of Brava -- 3.2.5. The Cadamosto Seamount. 327 $a3.2.6. Volcanic Eruptions and Hazards at Fogo -- 3.3. Magmatic Processes -- 3.4. Magma Storage in Southern Cape Verde -- 3.4.1. Controls on the Depth of Magma Storage -- 3.5. Insights Into the Shallower Magmatic System -- 3.6. Ocean Islands Globally -- 3.7. Conclusions and Recommendations -- Acknowledgments -- References -- Chapter 4 Anatomy of Intraplate Monogenetic Alkaline Basaltic Magmatism: Clues From Magma, Crystals, and Glass -- 4.1. Introduction -- 4.2. Origin of Intraplate Monogenetic Basaltic Systems -- 4.3. Insights From Whole?Rock Chemical Data -- 4.4. Insights From Crystal Compositions -- 4.5. Insights From Glass Compositions -- 4.6. Summary and Concluding Remarks -- Acknowledgments -- References -- Part II Experimental and Numerical Constraints on Magmatic Processes -- Chapter 5 Magma Differentiation and Contamination: Constraints From Experimental and Field Evidences -- 5.1. Introduction -- 5.2. Geological and Geochemical Inferences on Fractionation -- 5.3. Mechanisms of Liquid-Crystal Separation -- 5.3.1. Gravitational Collapse and Compaction -- 5.3.2. Crystallization in a Vertical (Non?Gravitational) TBL -- 5.4. Magma Contamination by Country-Rock Assimilation -- 5.4.1. Field Relations Supporting Assimilation and Magma Contamination -- 5.4.2. Experiments on Contamination -- 5.5. Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Crystal and Volatile Controls on the Mixing and Mingling of Magmas -- 6.1. Introduction: Magma Mixing and Mingling and Volcanic Plumbing Systems -- 6.1.1. Chemical Mixing -- 6.1.2. Physical Mingling -- 6.2. Controls on Magma Mingling: Observations, Experiments, and Numerical Models -- 6.2.1. Field Observations -- 6.2.2. Analogue Experiments -- 6.2.3. High-Temperature and/or High-Pressure Experiments -- 6.2.4. Numerical Models. 327 $a6.3. Petrologic Constraints on Mingling Conditions: Petrographic Interpretations -- 6.3.1. Volcanic Systems -- 6.3.2. Phenocryst, Xenocryst, and Groundmass Textures and Chemistries -- 6.3.3. Interpretation of Textures and Chemistries -- 6.3.4. Conceptual Model of Magma Mixing and Mingling -- 6.4. Quantitative Modeling of Crystal and Volatile Controls on Mixing and Mingling -- 6.4.1. The Model of Andrews and Manga (2014) -- 6.4.2. The Model of Bergantz et al. (2015) -- 6.4.3. The Model of Montagna et al. (2015) -- 6.4.4. Comparison and Common Limitations -- 6.5. Conclusions and Outlook for Future Research -- Acknowledgments -- References -- Chapter 7 From Binary Mixing to Magma Chamber Simulator: Geochemical Modeling of Assimilation in Magmatic Systems -- 7.1. Introduction -- 7.2. The End-Member Modes of Magmatic Interaction -- 7.2.1. Defining Homogeneity in Mixtures -- 7.2.2. Terminology of Mixing in Magmatic Systems -- 7.2.3. Mixing Versus Assimilation -- 7.2.4. Defining the End?Member Modes of Magmatic Interaction -- 7.3. Overview of Geochemical Models of Assimilation -- 7.3.1. In Bunsen's Footsteps: Simple Binary Mixing Model -- 7.3.2. Assimilation Coupled With Fractional Crystallization: AFCDP -- 7.3.3. Integration of Thermodynamic Constraints Into Modeling Assimilation: EC-AFC -- 7.3.4. Phase Equilibria of Assimilation: MCS -- 7.3.5. Comparison of the Different Assimilation Models -- 7.3.6. MCS Applied to a Natural System: Flood Basalts From Antarctica -- 7.4. Summary -- Acknowledgments -- References -- Part III Timescales of Magma Dynamics -- Chapter 8 Elemental Diffusion Chronostratigraphy: Time-Integrated Insights Into the Dynamics of Plumbing Systems -- 8.1. Introduction -- 8.2. Geospeedometry: Approach and Limitations -- 8.3. Isothermal Versus Non-Isothermal Approach -- 8.4. The Temperature Conundrum. 327 $a8.5. Two Examples: Stromboli and Popocatépetl Volcanoes -- 8.6. Resolving Elemental Diffusion Stratigraphy -- 8.7. Uncertainties -- 8.8. Conclusions: A Way Forward -- Acknowledgments -- References -- Chapter 9 Interpreting Magma Dynamics Through a Statistically Refined Thermometer: Implications for Clinopyroxene Fe-Mg Diffusion Modeling and S ector Zoning at Stromboli -- 9.1. Introduction -- 9.2. Calibration and Test Data Sets -- 9.3. Parameterization of the Thermometer -- 9.4. Implications for Magma Dynamics at Stromboli -- 9.4.1. Modeling Magma Storage Timescales -- 9.4.2. Interpreting Hourglass Sector Zoning -- 9.5. Final Remarks -- Acknowledgments -- References -- Chapter 10 Insights Into Processes and Timescales of Magma Storage and Ascent From Textural and Geochemical Investigations: Case Studies From High?Risk Neapolitan Volcanoes (Italy) -- 10.1. Introduction -- 10.2. Volcanological Background of Neapolitan Area -- 10.3. Magma Evolution in Crustal Reservoirs -- 10.3.1. Magma Storage Processes and Timescales for Neapolitan Volcanoes -- 10.4. Magma Ascent in Volcanic Conduit -- 10.4.1. Degassing and Crystallization of Ascending Alkaline Neapolitan Magmas -- 10.5. Conclusions: Implications for Future Hazards -- Acknowledgments -- References -- Index -- EULA. 330 $a"Understanding the combination of magma dynamics and timescales in volcanic systems has a fundamental implication in determining the eruptive behavior of volcanoes undergoing unrest and, more in general, in quantifying the mass fluxes that regulate the evolution of the Earth's mantle, crust and atmosphere. Crustal Magmatic System Evolution: Anatomy, Architecture, and Physico-Chemical Processes focuses on how various petrologic approaches can be combined to decipher, with high precision, magma dynamics and timescales that characterize past and present volcanic systems. Volume highlights include: - Discussion of fundamental petrological and geochemical aspects controlling the evolution of magmas - Timescales of individual magmatic processes from melting to ascent and eruption - Deployment of recent methods and approaches for the investigation of magma dynamics - Advancement of geochemical and geophysical monitoring techniques allowing quantification of the timescales of shallow magma dynamics in active volcanoes - Evolution of magma within plumbing systems in time and space, based on the petrologic record from past eruptions - Petrologic investigations requiring direct sampling of the magma after the eruption - Extraction of magma dynamics and timescales from natural rocks using basic petrological and geochemical methods on bulk rock samples - Complex geochemical (isotope and trace element) characterization of single phases, and the experimental and thermodynamic modelling of the magmatic processes - Insights on crystallization kinetics related to the timescales of pre-eruptive conditions Crustal Magmatic System Evolution: Anatomy, Architecture, and Physico-Chemical Processes is a valuable resource for professionals, researchers, and graduate students from a wide variety of fields including igneous petrology, experimental petrology, isotope geochemistry, geophysics, geochemistry, mineral chemistry and volcanology"--$cProvided by publisher. 410 0$aGeophysical monograph. 606 $aMagmas 606 $aMagmatism 606 $aVolcanoes 607 $aEarth (Planet)$xCrust 615 0$aMagmas. 615 0$aMagmatism. 615 0$aVolcanoes. 676 $a552.2 702 $aMasotta$b Matteo$f1984- 702 $aBeier$b Christoph$f1977- 702 $aMollo$b Silvio$f1975- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830866303321 996 $aCrustal magmatic system evolution$94049986 997 $aUNINA