LEADER 07532nam 2200493 450 001 9910830849103321 005 20230630001814.0 010 $a3-527-82409-X 010 $a3-527-82411-1 010 $a3-527-82410-3 035 $a(CKB)4100000011810978 035 $a(MiAaPQ)EBC6524951 035 $a(Au-PeEL)EBL6524951 035 $a(OCoLC)1243533869 035 $a(EXLCZ)994100000011810978 100 $a20211014d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aCO2 hydrogenation catalysis /$fedited by Yuichiro Himeda 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Incorporated,$d[2021] 210 4$d©2021 215 $a1 online resource (314 pages) $cillustrations 300 $aIncludes index. 311 $a3-527-34663-5 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Direct Use of CO2 -- 1.2 Chemicals from CO2 as a Feedstock -- 1.3 Application and Market Studies of CO2 Hydrogenation Products -- 1.3.1 Formic Acid/Formate -- 1.3.2 Methanol -- 1.3.3 Methanation -- 1.3.4 Energy Storage -- 1.4 Supply of Materials -- 1.4.1 CO2 Supply -- 1.4.2 Energy and H2 Supply -- 1.5 Political Aspect: Tax -- 1.6 Conclusion and Perspectives -- References -- Chapter 2 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts -- 2.1 Introduction -- 2.2 Ir Complexes -- 2.2.1 Ir Complexes with N,N-ligands -- 2.2.1.1 Tautomerizable N,N-ligands with OH Groups -- 2.2.1.2 N,N-ligands with NH Group -- 2.2.1.3 Tautomerizable N,N-ligands with OH and NH Groups -- 2.2.1.4 Tautomerizable N,N-ligands with Amide Group -- 2.2.2 Ir Complexes with C,N- and C,C-ligands -- 2.2.3 Ir Complexes with Pincer Ligands -- 2.3 Ru Complexes -- 2.3.1 Ru Complexes with Phosphorous Ligands -- 2.3.2 Ru Complexes with N,N- and N,O-ligands -- 2.3.3 Ru Complexes with Pincer Ligands -- 2.4 Rh Complexes -- 2.5 Summary and Conclusions -- References -- Chapter 3 Homogeneously Catalyzed CO2 Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts -- 3.1 Introduction -- 3.2 Iron-Catalyzed CO2 Hydrogenation -- 3.2.1 Non-pincer-Type Iron Complexes -- 3.2.2 Pincer-Type Iron Complexes -- 3.3 Cobalt-Catalyzed CO2 Hydrogenation -- 3.4 Nickel-Catalyzed CO2 Hydrogenation -- 3.5 Copper-Catalyzed CO2 Hydrogenation -- 3.6 Manganese-Catalyzed CO2 Hydrogenation -- 3.7 Other Non-precious Metals for CO2 Functionalization -- 3.8 Conclusions and Perspectives -- References -- Chapter 4 Catalytic Homogeneous Hydrogenation of CO2 to Methanol -- 4.1 Carbon Recycling and Methanol in the Early Twenty-First Century. 327 $a4.2 Heterogeneous Catalysis for CO2 to Methanol -- 4.3 Homogeneous Catalysis - An Alternative for CO2 to Methanol -- 4.3.1 Benefits of Homogeneous Catalysis -- 4.3.2 CO2 Hydrogenation to Methanol Through Different Routes -- 4.3.3 The First Homogeneous System for CO2 Reduction to Methanol -- 4.3.4 Indirect CO2 Hydrogenation -- 4.3.5 Direct CO2 Hydrogenation -- 4.3.5.1 Through Formate Esters -- 4.3.5.2 Through Oxazolidinone or Formamides -- 4.3.6 CO2 to Methanol via Formic Acid Disproportionation -- 4.4 Conclusion -- References -- Chapter 5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon Dioxide and Bioinspired Computational Design of Base-Metal Catalysts -- 5.1 Introduction -- 5.2 H2 Activation and CO2 Insertion Mechanisms -- 5.2.1 Hydrogen Activation -- 5.2.2 Insertion of CO2 -- 5.3 Hydrogenation of CO2 to Formic Acid/Formate -- 5.3.1 Catalysts with Precious Metals -- 5.3.2 Catalysts with Non-noble Metals -- 5.4 Hydrogenation of CO2 to Methanol -- 5.5 Summary and Conclusions -- References -- Chapter 6 Heterogenized Catalyst for the Hydrogenation of CO2 to Formic Acid or Its Derivatives -- 6.1 Introduction -- 6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports -- 6.3 Molecular Catalysts Heterogenized on Coordination Polymers -- 6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers -- 6.5 Concluding Remarks and Future Directions -- References -- Chapter 7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO2 Hydrogenation to Formic Acid/Formate -- 7.1 Introduction -- 7.2 Unsupported Bulk Metal Catalysts -- 7.3 Unsupported Metal Nanoparticle Catalysts -- 7.3.1 Metal Nanoparticles Without Stabilizers -- 7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids -- 7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles -- 7.4 Supported Metal Nanoparticle Catalysts. 327 $a7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials -- 7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon -- 7.4.3 Metal Nanoparticles Supported on Al2O3 -- 7.4.4 Metal Nanoparticles Supported on TiO2 -- 7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials -- 7.5 Embedded Single-Atom Catalysts -- 7.6 Summary and Conclusions -- References -- Chapter 8 Heterogeneously Catalyzed CO2 Hydrogenation to Alcohols -- 8.1 Introduction -- 8.2 CO2 Hydrogenation to Methanol - Past to Present -- 8.2.1 Syngas to Methanol -- 8.2.2 CO2 to Methanol -- 8.2.3 Thermodynamic Consideration - Chemical and Phase Equilibria -- 8.2.4 Catalyst Developments -- 8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts -- 8.2.6 Beyond Industrial Cu/ZnO/Al2O3 Catalysts -- 8.3 CO2 Hydrogenation to Ethanol and Higher Alcohols - Past to Present -- 8.3.1 Background -- 8.3.2 Catalysts, Active Sites, and Reaction Mechanisms -- 8.3.2.1 Modified-Methanol Synthesis Catalyst -- 8.3.2.2 Modified Fischer-Tropsch Catalysts -- 8.3.2.3 Rhodium-Based Catalysts -- 8.3.2.4 Modified Molybdenum-Based Catalysts -- 8.4 Summary -- References -- Chapter 9 Homogeneous Electrocatalytic CO2 Hydrogenation -- 9.1 CO2 Reduction to CH Bond-Containing Compounds: Formate or Formic Acid -- 9.1.1 Survey of Catalysts -- 9.1.1.1 Group 9 Metal Complexes -- 9.1.1.2 Group 8 Metal Complexes -- 9.1.1.3 Nickel Complexes -- 9.1.1.4 Iron and Iron/Molybdenum Clusters -- 9.1.2 Hydride Transfer Mechanisms in CO2 Reduction to Formate -- 9.1.2.1 Terminal Hydrides -- 9.1.2.2 Bridging Hydrides -- 9.1.3 Kinetic Factors in Catalyst Design -- 9.1.3.1 Roles of Metal-Ligand Cooperation -- 9.1.3.2 Roles of Multiple Metal-Metal Bonds -- 9.1.4 Thermochemical Considerations in Catalyst Design -- 9.1.4.1 Selectivity for Formate over H2 as a Function of Hydricity. 327 $a9.1.4.2 Solvent Dependence of Hydricity -- 9.2 Prospects in Electrocatalysis: CO2 Reduction Beyond Formation of One CH Bond -- References -- Chapter 10 Recent Advances in Homogeneous Catalysts for Hydrogen Production from Formic Acid and Methanol -- 10.1 Introduction -- 10.2 Formic Acid Dehydrogenation -- 10.2.1 Organic Solvent Systems -- 10.2.1.1 Ru -- 10.2.1.2 Ir -- 10.2.1.3 Fe -- 10.2.2 Aqueous Solution Systems -- 10.2.2.1 Ru -- 10.2.2.2 Ir -- 10.3 Aqueous-phase Methanol Dehydrogenation -- 10.3.1.1 Ir -- 10.3.1.2 Non-precious Metals -- 10.4 Conclusion -- References -- Index -- EULA. 606 $aCarbon dioxide 606 $aHydrogenation 615 0$aCarbon dioxide. 615 0$aHydrogenation. 676 $a665.89 702 $aHimeda$b Yuichiro 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830849103321 996 $aCO2 hydrogenation catalysis$93986422 997 $aUNINA