LEADER 11981nam 2201129 450 001 9910830798303321 005 20240219135652.0 010 $a1-280-55689-7 010 $a9786610556892 010 $a0-471-67837-6 010 $a1-60119-509-5 010 $a0-471-67838-4 024 7 $a10.1002/0471678384 035 $a(CKB)1000000000019151 035 $a(SSID)ssj0000071800 035 $a(PQKBManifestationID)11110117 035 $a(PQKBTitleCode)TC0000071800 035 $a(PQKBWorkID)10091393 035 $a(PQKB)10913500 035 $a(CaBNVSL)mat05237323 035 $a(IDAMS)0b000064810955c0 035 $a(IEEE)5237323 035 $a(MiAaPQ)EBC4957334 035 $a(Au-PeEL)EBL4957334 035 $a(CaONFJC)MIL55689 035 $a(OCoLC)85820394 035 $a(PPN)137627785 035 $a(EXLCZ)991000000000019151 100 $a20151221d2005 uy 101 0 $aeng 135 $aur|n||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aElectromyography $ephysiology, engineering, and noninvasive applications /$fedited by Roberto Merletti, Philip Parker 210 1$aHoboken, New Jersey :$cWiley-Interscience,$dc2004. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2005] 215 $a1 PDF (xxii, 494 pages) $cillustrations 225 1 $aIEEE press series on biomedical engineering ;$v11 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-471-67580-6 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Contributors -- 1 BASIC PHYSIOLOGY AND BIOPHYSICS OF EMG SIGNAL GENERATION (T. Moritani, D. Stegeman, R. Merletti) -- 1.1 Introduction -- 1.2 Basic Physiology of Motor Control and Muscle Contraction -- 1.3 Basic Electrophysiology of the Muscle Cell Membrane -- References -- 2 NEEDLE AND WIRE DETECTION TECHNIQUES (J. V. Trontelj, J. Jabre, M. Mihelin) -- 2.1 Anatomical and Physiological Background of Intramuscular Recording -- 2.2 Recording Characteristics of Needle Electrodes -- 2.3 Conventional Needle EMG -- 2.4 Special Needle Recording Techniques -- 2.5 Physical Characteristics of Needle EMG Signals -- 2.6 Recording Equipment -- References -- 3 DECOMPOSITION OF INTRAMUSCULAR EMG SIGNALS (D. W. Stashuk, D. Farina, K. Sgaard) -- 3.1 Introduction -- 3.2 Basic Steps for EMG Signal Decomposition -- 3.3 Evaluation of Performance of EMG Signal Decomposition Algorithms -- 3.4 Applications of Results of the Decomposition of an Intramuscular EMG Signal -- 3.5 Conclusions -- References -- 4 BIOPHYSICS OF THE GENERATION OF EMG SIGNALS (D. Farina, R. Merletti, D. F. Stegeman) -- 4.1 Introduction -- 4.2 EMG Signal Generation -- 4.3 Crosstalk -- 4.4 Relationships between Surface EMG Features and Developed Force -- 4.5 Conclusions -- References -- 5 DETECTION AND CONDITIONING OF THE SURFACE EMG SIGNAL (R. Merletti, H. Hermens) -- 5.1 Introduction -- 5.2 Electrodes: Their Transfer Function -- 5.3 Electrodes: Their Impedance, Noise, and dc Voltages -- 5.4 Electrode Configuration, Distance, Location -- 5.5 EMG Front-End Amplifiers -- 5.6 EMG Filters: Specifications -- 5.7 Sampling and A/D Conversion -- 5.8 European Recommendations on Electrodes and Electrode Locations -- References -- 6 SINGLE-CHANNEL TECHNIQUES FOR INFORMATION EXTRACTION FROM THE SURFACE EMG SIGNAL (E. A. Clancy, D. Farina, G. Filligoi) -- 6.1 Introduction -- 6.2 Spectral Estimation of Deterministic Signals and Stochastic Processes -- 6.3 Basic Surface EMG Signal Models -- 6.4 Surface EMG Amplitude Estimation. 327 $a6.5 Extraction of Information in Frequency Domain from Surface EMG Signals -- 6.6 Joint Analysis of EMG Spectrum and Amplitude (JASA) -- 6.7 Recurrence Quantification Analysis of Surface EMG Signals -- 6.8 Conclusions -- References -- 7 MULTI-CHANNEL TECHNIQUES FOR INFORMATION EXTRACTION FROM THE SURFACE EMG (D. Farina, R. Merletti, C. Disselhorst-Klug) -- 7.1 Introduction -- 7.2 Spatial Filtering -- 7.3 Spatial Sampling -- 7.4 Estimation of Muscle-Fiber Conduction Velocity -- 7.5 Conclusions -- References -- 8 EMG MODELING AND SIMULATION (D. F. Stegeman, R. Merletti, H. J. Hermens) -- 8.1 Introduction -- 8.2 Phenomenological Models of EMG -- 8.3 Elements of Structure-Based SEMG Models -- 8.4 Basic Assumptions -- 8.5 Elementary Sources of Bioelectric Muscle Activity -- 8.6 Fiber Membrane Activity Profiles, Their Generation, Propagation, and Extinction -- 8.7 Structure of the Motor Unit -- 8.8 Volume Conduction -- 8.9 Modeling EMG Detection Systems -- 8.10 Modeling Motor Unit Recruitment and Firing Behavior -- 8.11 Inverse Modeling -- 8.12 Modeling of Muscle Fatigue -- 8.13 Other Applications of Modeling -- 8.14 Conclusions -- References -- 9 MYOELECTRIC MANIFESTATIONS OF MUSCLE FATIGUE (R. Merletti, A. Rainoldi, D. Farina) -- 9.1 Introduction -- 9.2 Definitions and Sites of Neuromuscular Fatigue -- 9.3 Assessment of Muscle Fatigue -- 9.4 How Fatigue Is Reflected in Surface EMG Variables -- 9.5 Myoelectric Manifestations of Muscle Fatigue in Isometric Voluntary Contractions -- 9.6 Fiber Typing and Myoelectric Manifestations of Muscle Fatigue -- 9.7 Factors Affecting Surface EMG Variable -- 9.8 Repeatability of Estimates of EMG Variables and Fatigue Indexes -- 9.9 Conclusions -- References -- 10 ADVANCED SIGNAL PROCESSING TECHNIQUES (D. Zazula, S. Karlsson, C. Doncarli) -- 10.1 Introduction -- 10.2 Theoretical Background -- 10.3 Decomposition of EMG Signals -- 10.4 Applications to Monitoring Myoelectric Manifestations of Muscle Fatigue -- 10.5 Conclusions -- Acknowledgment. 327 $aReferences -- 11 SURFACE MECHANOMYOGRAM (C. Orizio) -- 11.1 The Mechanomyogram (MMG): General Aspects during Stimulated and Voluntary Contraction -- 11.2 Detection Techniques and Sensors Comparison -- 11.3 Comparison between Different Detectors -- 11.4 Simulation -- 11.5 MMG Versus Force: Joint and Adjunct Information Content -- 11.6 MMG Versus EMG: Joint and Adjunct Information Content -- 11.7 Area of Application -- References -- 12 SURFACE EMG APPLICATIONS IN NEUROLOGY (M. J. Zwarts, D. F. Stegeman, J. G. van Dijk) -- 12.1 Introduction -- 12.2 Central Nervous System Disorders and SEMG -- 12.3 Compound Muscle Action Potential and Motor Nerve Conduction -- 12.4 CMAP Generation -- 12.5 Clinical Applications -- 12.6 Pathological Fatigue -- 12.7 New Avenues: High-Density Multichannel Recording -- 12.8 Conclusion -- References -- 13 APPLICATIONS IN ERGONOMICS (G. M. Hgg, B. Melin, R. Kadefors) -- 13.1 Historic Perspective -- 13.2 Basic Workload Concepts in Ergonomics -- 13.3 Basic Surface EMG Signal Processing -- 13.4 Load Estimation and SEMG Normalization and Calibration -- 13.5 Amplitude Data Reduction over Time -- 13.6 Electromyographic Signal Alterations Indicating Muscle Fatigue in Ergonomics -- 13.7 SEMG Biofeedback in Ergonomics -- 13.8 Surface EMG and Musculoskeletal Disorders -- 13.9 Psychological Effects on EMG -- References -- 14 APPLICATIONS IN EXERCISE PHYSIOLOGY (F. Felici) -- 14.1 Introduction -- 14.2 A Few "Tips and Tricks? -- 14.3 Time and Frequency Domain Analysis of sEMG: What Are We Looking For? -- 14.4 Application of sEMG to the Study of Exercise -- 14.5 Strength and Power Training -- 14.6 Muscle Damage Studied by Means of sEMG -- References -- 15 APPLICATIONS IN MOVEMENT AND GAIT ANALYSIS (C. Frigo, R. Shiavi) -- 15.1 Relevance of Electromyography in Kinesiology -- 15.2 Typical Acquisition Settings -- 15.3 Study of Motor Control Strategies -- 15.4 Investigation on the Mechanical Effect of Muscle Contraction -- 15.5 Gait Analysis -- 15.6 Identification of Pathophysiologic Factors. 327 $a15.7 Workload Assessment in Occupational Biomechanics -- 15.8 Biofeedback -- 15.9 The Linear Envelope -- 15.10 Information Enhancement through Multifactorial Analysis -- References -- 16 APPLICATIONS IN REHABILITATION MEDICINE AND RELATED FIELDS (A. Rainoldi, R. Casale, P. Hodges, G. Jull) -- 16.1 Introduction -- 16.2 Electromyography as a Tool in Back and Neck Pain -- 16.3 EMG of the Pelvic Floor: A New Challenge in Neurological Rehabilitation -- 16.4 Age-Related Effects on EMG Assessment of Muscle Physiology -- 16.5 Surface EMG and Hypobaric Hipoxia -- 16.6 Microgravity Effects on Neuromuscular System -- References -- 17 BIOFEEDBACK APPLICATIONS (J. R. Cram) -- 17.1 Introduction -- 17.2 Biofeedback Application to Impairment Syndromes -- 17.3 SEMG Biofeedback Techniques -- 17.4 Summary -- References -- 18 CONTROL OF POWERED UPPER LIMB PROSTHESES (P. A. Parker, K. B. Englehart, B. S. Hudgins) -- 18.1 Introduction -- 18.2 Myoelectric Signal as a Control Input -- 18.3 Conventional Myoelectric Control -- 18.4 Emerging MEC Strategies -- 18.5 Summary -- References -- Index. 330 $aA complete overview of electromyography with contributions from pacesetters in the field In recent years, insights from the field of engineering have illuminated the vast potential of electromyography (EMG) in biomedical technology. Featuring contributions from key innovators working in the field today, Electromyography reveals the broad applications of EMG data in areas as diverse as neurology, ergonomics, exercise physiology, rehabilitation, movement analysis, biofeedback, and myoelectric control of prosthesis. Bridging the gap between engineering and physiology, this pioneering volume explains the essential concepts needed to detect, understand, process, and interpret EMG signals using non-invasive electrodes. Electromyography shows how engineering tools such as models and signal processing methods can greatly augment the insight provided by surface EMG signals. Topics covered include: . Basic physiology and biophysics of EMG generation. Needle and surface electrode detection techniques. Signal conditioning and processing issues. Single- and multi-channel techniques for information extraction. Development and application of physical models. Advanced signal processing techniques With its fresh engineering perspective, Electromyography offers physiologists, medical professionals, and students in biomedical engineering a new window into the far-reaching possibilities of this dynamic technology. 410 0$aIEEE Press series in biomedical engineering ;$v11 606 $aElectromyography$xDiagnosis 606 $aMuscles 606 $aNeuromuscular diseases 606 $aNervous System Diseases 606 $aTissues 606 $aMyography 606 $aElectrodiagnosis 606 $aMusculoskeletal System 606 $aAnatomy 606 $aDiagnostic Techniques and Procedures 606 $aDiseases 606 $aDiagnosis 606 $aAnalytical, Diagnostic and Therapeutic Techniques and Equipment 606 $aElectromyography 606 $aMuscles 606 $aNeuromuscular Diseases 606 $aMedicine$2HILCC 606 $aHealth & Biological Sciences$2HILCC 606 $aInternal Medicine$2HILCC 610 $aElectrical and Electronics Engineering. 615 0$aElectromyography$xDiagnosis 615 0$aMuscles 615 0$aNeuromuscular diseases 615 2$aNervous System Diseases 615 2$aTissues 615 2$aMyography 615 2$aElectrodiagnosis 615 2$aMusculoskeletal System 615 2$aAnatomy 615 2$aDiagnostic Techniques and Procedures 615 2$aDiseases 615 2$aDiagnosis 615 2$aAnalytical, Diagnostic and Therapeutic Techniques and Equipment 615 2$aElectromyography 615 2$aMuscles 615 2$aNeuromuscular Diseases 615 7$aMedicine 615 7$aHealth & Biological Sciences 615 7$aInternal Medicine 676 $a616.7/407547 701 $aMerletti$b Roberto$01343758 701 $aParker$b Philip$g(Philip A.)$0845598 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910830798303321 996 $aElectromyography$94087018 997 $aUNINA LEADER 05687nam 2201657z- 450 001 9910557579903321 005 20220111 035 $a(CKB)5400000000043850 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/76683 035 $a(oapen)doab76683 035 $a(EXLCZ)995400000000043850 100 $a20202201d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aIon and Molecule Transport in Membrane Systems 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (368 p.) 311 08$a3-0365-1359-0 311 08$a3-0365-1360-4 330 $aMembranes play an enormous role in our life. Biological cell membranes control the fluxes of substances in and out of cells. Artificial membranes are widely used in numerous applications including "green" separation processes in chemistry, agroindustry, biology, medicine; they are used as well in energy generation from renewable sources. They largely mimic the structure and functions of biological membranes. The similarity in the structure leads to the similarity in the properties and the approaches to study the laws governing the behavior of both biological and artificial membranes. In this book, some physico-chemical and chemico-physical aspects of the structure and behavior of biological and artificial membranes are investigated. 606 $aTechnology: general issues$2bicssc 610 $a3D printing 610 $aacetic acids 610 $aacid whey 610 $aair-pollutant nanoparticle 610 $aalkaline fuel cells 610 $aanion-exchange membrane 610 $aanomalous water diffusion 610 $abioactive peptides 610 $abioassay-guided validation 610 $abiomimetic membrane 610 $abiopolymer electrolyte membranes 610 $aCFD 610 $acholesterol 610 $acoarse-grained model 610 $acomputer simulations 610 $aconcentration difference 610 $aconcentration polarisation 610 $acorrugated membranes 610 $acrosslinking 610 $acurrent-voltage curves 610 $ademineralization 610 $adielectric properties 610 $aEDLC fabrication 610 $aelectric modulus study 610 $aelectro-convective instability 610 $aelectrodialysis 610 $aelectrodialysis with filtration membrane (EDFM) 610 $aelectrokinetics 610 $aelectrolyte composition 610 $afluid-structure interaction 610 $afouling 610 $aFTIR study 610 $aFujifilm 610 $aglucose uptake 610 $aheterogeneity 610 $ahexanoic acids 610 $ahydrodynamic 610 $ahydrophilicity 610 $ahydroxide exchange membrane 610 $ahyperbranched polymer 610 $aimpedance study 610 $aImpedance study 610 $ainner nuclear membrane 610 $ainteraction 610 $aion channel gating 610 $aion exchange membrane 610 $aion exchange membranes 610 $aion pair amphiphile 610 $aion transport parameters 610 $aion-exchange membrane 610 $aion-exchange membranes 610 $aion-exchange particles 610 $aionic channel 610 $aionic conductivity 610 $aionic liquid 610 $aionic liquids 610 $alactic acid removal 610 $aLaPO4: Ce 610 $alimiting current density 610 $aloss tangent peaks 610 $amass transfer 610 $amembrane capacitive deionization 610 $amolecular dynamics 610 $amolecular dynamics simulation 610 $aMorphology 610 $an/a 610 $anano-size water pore 610 $aNeosepta 610 $aNETs 610 $anuclear envelope 610 $aO2 plasma 610 $aouter nuclear membrane 610 $aoverlimiting current 610 $aparticle tracking 610 $aphosphate transport 610 $aphotoluminescence 610 $aphysico-chemical properties of confined water 610 $apolymer blends 610 $apolymer inclusion membrane 610 $apolyphenylene oxide 610 $aPP membrane 610 $apressure drop 610 $aprofiled membrane 610 $aprofiled membranes 610 $aprotein-water interactions 610 $apulmonary surfactant monolayer 610 $apulsed electric field 610 $apulsed electrodialysis reversal 610 $areverse electrodialysis 610 $asalinity gradient power 610 $ascaling 610 $aseparator 610 $astructural mechanics 610 $asupported liquid membrane 610 $aTb 610 $athermal pressing 610 $aTiO2 nanoparticles 610 $atriple size-selective separation 610 $aTRPV1 channel permeability for water 610 $aTrukhan model 610 $aUV treatment 610 $avolatile fatty acids (VFAs) 610 $avoltammetry 610 $awater dynamics 610 $awater H-bonding 610 $awater permeation 610 $awater swelling 610 $awhey 610 $aXRD analysis 610 $azinc-air battery 615 7$aTechnology: general issues 700 $aNikonenko$b Victor V$4edt$01328363 702 $aNikonenko$b Victor V$4oth 906 $aBOOK 912 $a9910557579903321 996 $aIon and Molecule Transport in Membrane Systems$93038528 997 $aUNINA