LEADER 11522oam 2200601 450 001 9910830743603321 005 20240123081811.0 010 $a1-119-87949-3 010 $a1-119-87947-7 035 $a(MiAaPQ)EBC7267872 035 $a(Au-PeEL)EBL7267872 035 $a(OCoLC) 1382303415 035 $a(BIP)088238162 035 $a(EXLCZ)9927459135600041 100 $a20230807h20242023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCrystallization of organic compounds $ean industrial perspective /$fHsien-Hsin Tung [et al.] 205 $aSecond edition. 210 1$aHoboken, N.J. :$cJohn Wiley & Sons, Inc.,$d[2024] 210 4$d©2023 215 $a1 online resource (ix, 368 pages) $cillustrations (some color) 311 08$aPrint version: Tung, Hsien-Hsin Crystallization of Organic Compounds Newark : John Wiley & Sons, Incorporated,c2023 9781119879466 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction to Crystallization -- 1.1 Crystal Properties and Polymorphs (Chapters 2 and 3) -- 1.2 NUCLEATION AND GROWTH KINETICS (CHAPTER 4) -- 1.3 MIXING AND SCALE-UP (CHAPTER 5) -- 1.4 Critical Issues and Quality by Design (Chapter 6) -- 1.4.1 Critical Issues -- 1.4.2 Design of Experiment -- 1.5 Crystallization Process Options (Chapters 7-10) -- 1.5.1 Cooling (Chapter 7) -- 1.5.2 Evaporation Solvent (Chapter 8) -- 1.5.3 Antisolvent Addition (Chapter 9) -- 1.5.4 Reactive Crystallization (Chapter 10) -- 1.6 Downstream Operations (Chapters 11 And 12) -- 1.7 Special Applications (Chapter 13) -- Chapter 2 Properties -- 2.1 Solubility -- 2.1.1 Free Energy-Composition Phase Diagram -- 2.1.2 Temperature -- 2.1.3 Solvent -- 2.1.4 Impurities -- 2.1.5 Chemical and Physical Structure, Salt and Co-Crystal Form -- 2.1.6 Solubility Measurement and Prediction -- 2.1.7 Significance of Crystallization -- 2.2 Supersaturation, Metastable Zone, and Induction Time -- 2.2.1 Free Energy-Composition Phase Diagram -- 2.2.2 Factors Affecting Metastable Zone Width and Induction Time -- 2.2.3 Measurement and Prediction -- 2.2.4 Significance of Crystallization -- 2.3 Oil, Amorphous, and Crystalline States -- 2.3.1 Phase Diagram -- 2.3.2 Measurement -- 2.3.3 Significance to Crystallization -- 2.4 Polymorphism -- 2.4.1 Phase Diagram -- 2.4.2 Measurement and Prediction -- 2.4.3 Significance to Crystallization and Downstream Operations -- 2.5 Solvate -- 2.5.1 Phase Diagram -- 2.5.2 Measurement and Prediction -- 2.5.3 Significance to Crystallization and Downstream Operations -- 2.6 Solid Compound, Solid Solution, and Solid Mixture -- 2.6.1 Phase Diagram -- 2.6.2 Measurement and Prediction -- 2.6.3 Significance to Crystallization -- 2.7 Inclusion and Occlusion -- 2.7.1 Mechanism -- 2.7.2 Measurement. 327 $a2.7.3 Significance to Crystallization and Downstream Operations -- 2.8 Adsorption, Hygroscopicity, and Deliquesce -- 2.8.1 Phase Diagram -- 2.8.2 Measurement -- 2.8.3 Significance to Crystallization and Downstream Operations -- 2.9 Crystal Morphology -- 2.9.1 General Observations -- 2.9.2 Measurement and Prediction -- 2.9.3 Significance to Crystallization and Downstream Operations -- 2.10 Partical Size Distribution and Surface Area -- 2.10.1 Particle Distribution Definition -- 2.10.2 Measurement -- 2.10.3 Significance to Crystallization and Downstream Operations -- Chapter 3 Polymorphism -- 3.1 Phase Rule -- 3.2 Phase Transition -- 3.2.1 Enantiotropy and Monotropy -- 3.2.2 Metastable Equilibrium and Suspended Transformation -- 3.2.3 Measurement -- 3.3 Prediction of Crystal Structure and its Formation -- 3.3.1 Equilibrium Approach -- 3.3.2 Kinetic Approach -- 3.4 Selection and Screening of Crystal Forms -- 3.4.1 Selection Criteria -- 3.4.2 Candidates for Forming Salts and Co-crystals -- 3.4.3 High Throughput and Process-Based Screening -- 3.5 Examples -- EXAMPLE 3.1 -- EXAMPLE 3.2 -- EXAMPLE 3.3 -- EXAMPLE 3.4 -- EXAMPLE 3.5 -- EXAMPLE 3.6 -- EXAMPLE 3.7 -- EXAMPLE 3.8 -- EXAMPLE 3.9 -- Chapter 4 Kinetics -- 4.1 SUPERSATURATION AND RATE PROCESSES -- 4.2 Nucleation -- 4.2.1 Homogeneous Nucleation -- 4.2.2 Heterogeneous Nucleation -- 4.2.3 Secondary Nucleation -- 4.3 Crystal Growth and Agglomeration -- 4.3.1 Crystal Growth Mechanisms -- 4.3.2 Agglomeration Mechanism -- 4.3.3 Measurement of Crystal Growth Rate -- 4.3.4 Crystal Population Balance -- 4.4 Nucleate/Seed Aging and Ostwald Ripening -- 4.5 DELIVERED PRODUCT: PURITY, CYSTAL FORM, SIZE AND MORPHOLOGY, AND CHEMICAL and PHYSICAL STABILITY -- 4.6 Design of Experiment (DOE)-Model-Based Approach -- 4.7 Model-Free Feedback Control -- Chapter 5 Mixing and Crystallization -- 5.1 INTRODUCTION. 327 $a5.2 Mixing Considerations and Factors -- 5.2.1 Mixing Time -- 5.2.2 Mixing Intensity -- 5.2.3 Mixing Distribution -- 5.3 Mixing Effects on Nucleation -- 5.3.1 Primary Nucleation -- 5.3.2 Secondary Nucleation and Particle Breakage -- 5.3.3 Damkoehler Number for Nucleation -- 5.3.4 Scale-Up of Nucleation-Based Processes -- 5.4 Mixing Effects on Crystal Growth -- 5.4.1 Mass Transfer Rate -- 5.4.2 Da Number for Crystallization -- 5.4.3 Conflicting Mixing Effects -- 5.4.4 Experimentation on Mixing Effects -- 5.4.5 Effects of Mixing on PSD -- 5.5 Mixing Distribution and Scale-Up -- 5.5.1 Power -- 5.5.2 Off-Bottom Suspension -- 5.6 Crystallization Equipment -- 5.6.1 Stirred Vessels -- 5.6.2 Fluidized Bed Crystallizer -- 5.6.3 Impinging Jet Crystallizer -- 5.7 Process Design and Examples -- EXAMPLE 5.1 -- EXAMPLE 5.2 -- Chapter 6 Critical Issues and Quality by Design -- 6.1 Quality By Design -- 6.2 Basic Properties -- 6.2.1 Solubility and Crystal Forms -- 6.2.2 Particle Size and Morphology -- 6.3 Seed -- 6.3.1 Determination of Seed Form, Size, and Quantity -- 6.3.2 Effectiveness of Seeding -- 6.4 Supersaturation -- 6.4.1 Generation of Supersaturation -- 6.4.2 Oiling Out, Agglomeration/Aggregation -- 6.4.3 Nucleation -- 6.4.4 Crystal Growth -- 6.5 Mixing and Scale-Selection of Equipment and Operating Procedures -- 6.5.1 Stirred Vessels -- 6.5.2 In-line Mixers -- 6.5.3 Fluidized Bed -- 6.6 Strategic Considerations for Crystallization Process Development -- 6.7 Summary of Critical Issues -- Chapter 7 Cooling Crystallization -- 7.1 Batch Operation -- 7.1.1 Rate of Cooling -- 7.1.2 Metastable Region -- 7.1.3 Seeding Versus Spontaneous Nucleation -- 7.1.4 Mixing and Mass Transfer -- 7.1.5 Solvent -- 7.1.6 Impurities (Dissolved and Undissolved) -- 7.2 Continuous Operations -- 7.2.1 The Attraction of Continuous Processing. 327 $a7.2.2 Operating Strategy for Continuous Cooling Crystallizers -- 7.2.3 Plug Flow and Cascade Operation -- 7.2.4 Fluidized Bed Continuous Cooling Crystallizer Designs -- 7.3 Process Design-Examples -- EXAMPLE 7.1 -- EXAMPLE 7.2 -- EXAMPLE 7.3 -- EXAMPLE 7.4 -- EXAMPLE 7.5 -- EXAMPLE 7.6 -- Chapter 8 Evaporative Crystallization -- 8.1 INTRODUCTION -- 8.2 Solubility Diagrams -- 8.2.1 Increasing Solubility -- 8.2.2 Decreasing Solubility -- 8.2.3 Change in Solvent -- 8.3 FACTORS AFFECTING NUCLEATION AND GROWTH -- 8.4 Scale-Up -- 8.5 Equipment -- 8.5.1 Heat Transfer -- 8.5.2 Overconcentration -- 8.5.3 Combination of Evaporation and Cooling -- 8.6 Process Design and Examples -- EXAMPLE 8.1 -- EXAMPLE 8.2 -- EXAMPLE 8.3 -- Chapter 9 Anti-solvent Crystallization -- 9.1 Operation -- 9.1.1 Normal Mode of Addition -- 9.1.2 Reverse Addition -- 9.1.3 Simultaneous Mode of Addition -- 9.1.4 Addition Strategy -- 9.1.5 Seeding -- 9.2 IN-LINE MIXING CRYSTALLIZATION -- 9.3 Process Design and Examples -- EXAMPLE 9.1 -- EXAMPLE 9.2 -- EXAMPLE 9.3 -- EXAMPLE 9.4 -- EXAMPLE 9.5 -- EXAMPLE 9.6 -- EXAMPLE 9.7 -- Chapter 10 Reactive Crystallization -- 10.1 INTRODUCTION -- 10.1.1 Utilization -- 10.1.2 Literature -- 10.2 Control of Particle Size -- 10.2.1 Controlling for Growth -- 10.3 Key Issues in Organic Reactive Crystallization -- 10.3.1 Mixing Issues -- 10.3.2 Mixing and Growth -- 10.3.3 Induction Time and Nucleation -- 10.3.4 Supersaturation Control -- 10.3.5 Seeding -- 10.3.6 Crystal Growth -- 10.3.7 Impurities/Additives -- 10.3.8 Secondary Effects -- 10.4 Creation of Fine Particles-In-Line Reactive Crystallization -- 10.5 Process Design and Scale-Up -- EXAMPLE 10.1 -- EXAMPLE 10.2 -- EXAMPLE 10.3 -- EXAMPLE 10.4 -- Chapter 11 Filtration -- 11.1 INTRODUCTION -- 11.2 BASIC PROPERTIES -- 11.2.1 Particle Size -- 11.2.2 Filter Medium -- 11.2.3 Wash Solvents. 327 $a11.2.4 Temperature -- 11.3 KINETICS -- 11.3.1 Filtrate Concentration Profile During Filtration/Washing -- 11.3.2 Filtration and Cake Wash Protocol -- 11.3.3 Filtration Model -- 11.3.4 Settling Rate vs Filtration Rate -- 11.4 process design and scale-up -- 11.4.1 Agitated Filter Dryer -- 11.4.2 Centrifuge Filter -- 11.4.3 Other Operation Complications -- Chapter 12 Drying -- 12.1 INTRODUCTION -- 12.2 BASIC PROPERTIES -- 12.2.1 Vapor-Liquid Equilibrium -- 12.2.2 Solvation and Desolvation -- 12.2.3 Hardness and Brittleness of Solid Particles -- 12.2.4 Agglomerates and Granules of Solid Particles -- 12.3 KINETICS -- 12.3.1 Drying Profiles -- 12.3.2 Particle Fracture and Agglomeration -- 12.3.3 Inter-Relationship Between Drying Stage and Particle Behavior -- 12.4 PROCESS DESIGN AND SCALE-UP -- 12.4.1 Process Design -- 12.4.2 Scale-up -- Chapter 13 Special Applications -- 13.1 INTRODUCTION -- 13.2 CRYSTALLIZATION WITH SUPERCRITICAL FLUIDS -- 13.3 Resolution of Stereo-Isomers -- 13.3.1 Option 1: Use of a Chiral Additive to Create a Diastereoisomeric Set of Compounds -- 13.3.2 Option 2: Chiral Chemistry to Improve Reaction Chiral Selectivity of the Desired Isomer -- 13.3.3 Option 3: Kinetic and Dynamic Resolution -- 13.3.4 Option 4: Use of Chromatography, Membrane, Enzyme, or Other Separation Technology -- 13.4 WET MILLS IN CRYSTALLIZATION -- 13.5 COMPUTATIONAL FLUID DYNAMICS IN CRYSTALLIZATION -- 13.6 Solid Dispersion-Crystalline and/or Amorphous Drugs -- 13.7 Process Design and Examples -- EXAMPLE 13.1 -- EXAMPLE 13.2 -- EXAMPLE 13.3 -- EXAMPLE 13.4 -- EXAMPLE 13.5 -- EXAMPLE 13.6 -- EXAMPLE 13.7 -- References -- Index -- EULA. 330 8 $aBased on the authors hands-on experiences as process engineers, through the use of case studies and examples of crystallization processes, ranging from laboratory development through manufacturing scale-up, this book guides readers through the practical applications of crystallization and emphasises strategies that have proven to be successful, enabling readers to avoid common pitfalls that can render standard procedures unsuccessful. 606 $aCrystallization$xIndustrial applications 606 $aPharmaceutical chemistry 606 $aPharmaceutical industry 610 $aChemistry, Technical 610 $aScience 615 0$aCrystallization$xIndustrial applications. 615 0$aPharmaceutical chemistry. 615 0$aPharmaceutical industry. 676 $a615/.19 700 $aTung$b Hsien-Hsin$f1955-$01658856 702 $aPaul$b Edward L. 702 $aMidler$b Michael$f1936-2023, 702 $aMcCauley$b James A. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830743603321 996 $aCrystallization of organic compounds$94013143 997 $aUNINA