LEADER 01375nam 2200397 450 001 9910717474403321 005 20211208161520.0 035 $a(CKB)4330000001272401 035 $a(OCoLC)1287951169 035 $a(EXLCZ)994330000001272401 100 $a20211208d2011 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aThermal mapping of Hawaiian volcanoes with ASTER satellite data /$fby Matthew R. Patrick and Coral-Nadine Witzke 210 1$aReston, Virginia :$cU.S. Department of the Interior, U.S. Geological Survey,$d2011. 215 $a1 online resource (iv, 22 pages) $cillustrations (some color), maps (some color) 225 1 $aScientific investigations report ;$v2011-5110 320 $aIncludes bibliographical references (pages 20-22). 606 $aVolcanoes$zHawaii 606 $aGeological mapping 606 $aInfrared imaging 615 0$aVolcanoes 615 0$aGeological mapping. 615 0$aInfrared imaging. 700 $aPatrick$b Matthew R.$01398984 702 $aWitzke$b Coral-Nadine 712 02$aGeological Survey (U.S.), 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910717474403321 996 $aThermal mapping of Hawaiian volcanoes with ASTER satellite data$93466064 997 $aUNINA LEADER 11683nam 2200589 450 001 9910830709003321 005 20230713061655.0 010 $a3-527-81640-2 010 $a3-527-81639-9 010 $a3-527-81642-9 035 $a(CKB)4940000000615558 035 $a(MiAaPQ)EBC6798571 035 $a(Au-PeEL)EBL6798571 035 $a(OCoLC)1285170587 035 $a(OCoLC)1301180280 035 $a(OCoLC-P)1301180280 035 $a(CaSebORM)9783527344901 035 $a(PPN)270645209 035 $a(EXLCZ)994940000000615558 100 $a20220729d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElectronic waste $erecycling and reprocessing for a sustainable future /$fMaria E. Holuszko, Amit Kumar, and Denise C. R. Espinosa 205 $a1st. 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc.,$d[2022] 210 4$d©2022 215 $a1 online resource (339 pages) 311 $a3-527-34490-X 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction, Vision, and Opportunities -- 1.1 Background -- 1.2 E?Waste -- 1.3 Outline -- References -- Chapter 2 e?Waste Management and Practices in Developed and Developing Countries* -- 2.1 Introduction -- 2.2 Overview on WEEE Management and Practices -- 2.3 International WEEE Management and Transboundary Movement -- 2.4 WEEE Management and Practices - Developed and Developing Countries -- 2.5 Developed Countries -- 2.5.1 Switzerland -- 2.5.2 Japan -- 2.5.3 Australia -- 2.6 Developing Countries -- 2.6.1 Brazil -- 2.6.2 India -- 2.6.3 South Africa -- 2.6.4 Nigeria -- 2.6.5 Taiwan -- 2.7 Conclusions -- References -- Chapter 3 e?Waste Transboundary Movement Regulations in Various Jurisdictions* -- 3.1 Background -- 3.2 International Legislation and Transboundary Movement -- 3.3 Extended Producer Responsibility (EPR) -- 3.4 Regulations in Various Jurisdictions -- 3.4.1 Europe -- 3.4.1.1 France -- 3.4.1.2 Germany -- 3.4.1.3 Switzerland -- 3.4.1.4 Norway -- 3.4.2 Americas -- 3.4.2.1 United States of America -- 3.4.2.2 Canada -- 3.4.2.3 Brazil -- 3.4.3 Asia -- 3.4.3.1 Japan -- 3.4.3.2 China -- 3.4.3.3 Taiwan -- 3.4.3.4 India -- 3.4.4 Africa -- 3.4.4.1 South Africa -- 3.4.4.2 Nigeria -- 3.4.5 Australia -- 3.5 Conclusions -- References -- Chapter 4 Approach for Estimating e?Waste Generation -- 4.1 Background -- 4.2 Econometric Analysis -- 4.3 Consumption and Use/Leaching/Approximation 1 Method -- 4.4 The Sales/Approximation 2 Method -- 4.5 Market Supply Method -- 4.5.1 Simple Delay -- 4.5.2 Distribution Delay Method -- 4.5.3 Carnegie Mellon Method/Mass Balance Method -- 4.6 Time?Step Method -- 4.7 Summary of Estimation Methods -- 4.8 Lifespan of Electronic Products -- 4.9 Global e?Waste Estimation -- References. 327 $aChapter 5 Materials Used in Electronic Equipment and Manufacturing Perspectives* -- 5.1 Introduction -- 5.2 Large Household Appliances (LHA) -- 5.3 Small Household Appliance (SHA) -- 5.4 IT and Telecommunications Equipment -- 5.4.1 Computers and Notebooks -- 5.4.2 Monitors and Screens -- 5.4.3 Mobile Phones (MP) -- 5.4.4 Printed Circuit Boards (PCB) -- 5.5 Photovoltaic (PV) Panels -- 5.6 Lighting Equipment -- 5.7 Toys, Leisure, and Sport -- 5.8 Future Trends in WEEE - Manufacturing, Design, and Demand -- References -- Chapter 6 Recycling Technologies - Physical Separation -- 6.1 Introduction -- 6.2 Dismantling -- 6.3 Comminution/Size Reduction -- 6.3.1 Shredders -- 6.3.2 Hammer Mills -- 6.3.3 High?Voltage Fragmentation -- 6.3.4 Knife Mills -- 6.3.5 Cryogrinding -- 6.4 Particle Size Analysis -- 6.5 Size Separation/Classification -- 6.5.1 Screening -- 6.5.2 Classification -- 6.5.2.1 Centrifugal Classifier -- 6.5.2.2 Gravitational Classifiers -- 6.6 Magnetic Separation -- 6.6.1 Low?Intensity Magnetic Separators -- 6.6.2 High?Intensity Magnetic Separators -- 6.7 Electrical Separation -- 6.7.1 Corona Electrostatic Separation -- 6.7.2 Triboelectric Separation -- 6.7.3 Eddy Current Separation -- 6.8 Gravity Separation -- 6.8.1 Jigs -- 6.8.2 Spirals -- 6.8.3 Shaking Tables -- 6.8.4 Zig?Zag Classifiers -- 6.8.5 Centrifugal Concentrators -- 6.8.6 Dense Medium Separation (DM Bath/Cyclone) -- 6.9 Froth Flotation -- 6.10 Sensor?Based Sorting -- 6.11 Example Flowsheets -- References -- Chapter 7 Pyrometallurgical Processes for Recycling Waste Electrical and Electronic Equipment -- 7.1 Introduction -- 7.2 Printed Circuit Boards -- 7.3 Pyrometallurgical Processes -- 7.3.1 Smelting -- 7.3.1.1 Copper?Smelting Processes - Sulfide Route -- 7.3.1.2 Copper?Smelting Processes - Secondary Smelters -- 7.3.1.3 Lead?Smelting Processes. 327 $a7.3.1.4 Advantages and Limitations of Smelting Processes -- 7.3.2 Electrochemical Processes -- 7.3.2.1 High?Temperature Electrolysis -- 7.3.2.2 Low?Temperature Electrolysis -- 7.3.3 Other Pyrometallurgical Operations Used in Electronic Waste Recycling -- 7.3.3.1 Roasting -- 7.3.3.2 Molten Salt Oxidation Treatment -- 7.3.3.3 Distillation -- 7.3.3.4 Pyrolysis -- References -- Chapter 8 Recycling Technologies - Hydrometallurgy -- 8.1 Background -- 8.2 Waste Printed Circuit Boards (WPCBs) -- 8.3 Photovoltaic Modules (PV) -- 8.4 Batteries -- 8.5 Light?Emitting Diodes (LEDs) -- 8.6 Trends -- References -- Chapter 9 Recycling Technologies - Biohydrometallurgy -- 9.1 Introduction -- 9.2 Bioleaching: Metal Winning with Microbes -- 9.3 Biosorption: Selective Metal Recovery from Waste Waters -- 9.3.1 Biosorption Via Metal Selective Peptides -- 9.3.2 Chelators Derived from Nature -- 9.4 Bioflotation: Separation of Particles with Biological Means -- 9.5 Bioreduction and Bioaccumulation: Nanomaterials from Waste -- 9.6 Conclusion -- References -- Chapter 10 Processing of Nonmetal Fraction from Printed Circuit Boards and Reutilization -- 10.1 Background -- 10.2 Nonmetal Fraction Composition -- 10.3 Benefits of NMF Recycling -- 10.3.1 Economic Benefits -- 10.3.2 Environmental Protection and Public Health -- 10.4 Recycling of NMF -- 10.4.1 Physical Recycling -- 10.4.1.1 Size Classification -- 10.4.1.2 Gravity Separation -- 10.4.1.3 Magnetic Separation -- 10.4.1.4 Electrical Separation -- 10.4.1.5 Froth Flotation -- 10.4.2 Chemical Recycling -- 10.5 Potential Usage -- References -- Chapter 11 Life Cycle Assessment of e?Waste - Waste Cellphone Recycling -- 11.1 Introduction -- 11.2 Background -- 11.2.1 Theory of Life Cycle Assessment -- 11.3 LCA Studies on WEEE -- 11.3.1 Applications on WEEE Management Strategy -- 11.3.2 Applications on WEEE Management System. 327 $a11.3.3 Applications on Hazardous Potential of WEEE Management and Recycling -- 11.4 Case Study -- 11.4.1 Goal and Scope Definition -- 11.4.1.1 Functional Unit -- 11.4.1.2 System Boundary -- 11.4.2 Life Cycle Inventory -- 11.4.2.1 Formal Collection -- 11.4.2.2 Informal Collection -- 11.4.2.3 Mechanical Dismantling -- 11.4.2.4 Plastic Recycling -- 11.4.2.5 Screen Glass Recycling -- 11.4.2.6 Battery Disposal -- 11.4.2.7 Electronic Refining for Materials -- 11.4.3 Life Cycle Impact Assessment -- 11.4.4 Results -- 11.4.4.1 Feature Phone Formal Collection Scenario -- 11.4.4.2 Feature Phone Informal Collection Scenario -- 11.4.4.3 Smartphone Formal Collection Scenario -- 11.4.4.4 Smartphone Informal Collection Scenario -- 11.4.5 Discussion -- 11.5 Conclusion -- References -- Chapter 12 Biodegradability and Compostability Aspects of Organic Electronic Materials and Devices -- 12.1 Introduction -- 12.1.1 Technological Innovation and Waste -- 12.1.2 Eco?friendliness -- 12.1.3 Organic Electronics -- 12.1.4 Opportunities for Green Organic Electronics -- 12.2 State of the Art in Biodegradable Electronics -- 12.3 Organic Field?Effect Transistors (OFETs) -- 12.3.1 Fundamentals -- 12.3.2 Anthraquinone, Benzoquinone, and Acenequinone -- 12.3.3 Quinacridones -- 12.4 Electrochemical Energy Storage -- 12.4.1 Quinones -- 12.4.2 Dopamine -- 12.4.3 Melanins -- 12.4.4 Tannins -- 12.4.5 Lignin -- 12.5 Biodegradation in Natural and Industrial Ecosystems -- 12.5.1 Degradation and Biodegradation -- 12.5.2 Composting Process -- 12.5.3 Materials Half?Life Under Composting Conditions -- 12.5.4 Biodegradation in the Environment -- 12.6 Microbiome in Natural and Industrial Ecosystems -- 12.6.1 The Ruminant-Hay Natural Ecosystem -- 12.6.2 The Termite-Wood Natural Ecosystem -- 12.6.3 The Industrial Composter-Biowaste Ecosystem -- 12.6.3.1 Municipal Composting Facility. 327 $a12.6.3.2 Engineered Composting Facility -- 12.6.4 Specialized Inoculant Adapted to Organic Matter -- 12.6.5 Specialized Inoculant Adapted to Heavy Metals -- 12.7 Concluding Remarks and Perspectives -- Acknowledgment -- References -- Chapter 13 Circular Economy in Electronics and the Future of e?Waste -- 13.1 Introduction -- 13.2 Digitalization and the Need for Electronic Devices -- 13.3 Recycling and Circular Economy -- 13.4 Challenges for e?Waste Recycling and Circular Economy -- 13.5 Drivers for Change - Circular Economy -- 13.6 Demand for Recyclable Products -- 13.7 Summary -- References -- Index -- EULA. 330 $aDiscover the latest technologies in the pursuit of zero-waste solutions in the electronics industry In Electronic Waste: Recycling and Reprocessing for a Sustainable Future, a team of expert sustainability researchers delivers a collection of resources that thoroughly examine methods for extracting value from electronic waste while aiming for a zero-waste scenario in industrial production. The book discusses the manufacturing and use of materials in electronic devices while presenting an overview of separation methods for industrial materials. Readers will also benefit from a global overview of various national and international regulations related to the topic of electronic and electrical waste. A must-read resource for scientists and engineers working in the production and development of electronic devices, the authors provide comprehensive overviews of the benefits of achieving a zero-waste solution in electronic and electrical waste, as well as the risks posed by incorrectly disposed of electronic waste. Readers will enjoy: An introduction to electronic waste, including the opportunities presented by zero-waste technologies and solutions Explorations of e-waste management and practices in developed and developing countries and e-waste transboundary movement regulations in a variety of jurisdictions Practical discussions of approaches for estimating e-waste generation and the materials used in electronic equipment and manufacturing perspectives In-depth treatments of various recycling technologies, including physical separation, pyrometallurgy, hydrometallurgy, and biohydrometallurgy Perfect for materials scientists, electronic engineers, and metal processing professionals, Electronic Waste: Recycling and Reprocessing for a Sustainable Future will also earn a place in the libraries of industrial chemists and professionals working in organizations that use large amounts of chemicals or produce electronic waste. 606 $aRecycling (Waste, etc.)$xTechnological innovations 606 $aSustainable development 615 0$aRecycling (Waste, etc.)$xTechnological innovations. 615 0$aSustainable development. 676 $a363.7282 700 $aHoluszko$b M. E.$01606710 702 $aKumar$b Amit 702 $aEspinosa$b Denise C. R. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830709003321 996 $aElectronic waste$93932651 997 $aUNINA