LEADER 04538nam 2200589 a 450 001 9910830703103321 005 20180613000628.0 010 $a3-527-67053-X 010 $a1-299-15720-3 010 $a3-527-67056-4 010 $a3-527-67055-6 035 $a(CKB)2670000000328196 035 $a(EBL)1120864 035 $a(OCoLC)827207484 035 $a(SSID)ssj0000859774 035 $a(PQKBManifestationID)11440985 035 $a(PQKBTitleCode)TC0000859774 035 $a(PQKBWorkID)10883532 035 $a(PQKB)11209172 035 $a(MiAaPQ)EBC1120864 035 $a(PPN)170160831 035 $a(EXLCZ)992670000000328196 100 $a20130225d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNonequilibrium magnons$b[electronic resource] $etheory, experiment, and applications /$fVladimir L. Safonov 210 $aWeinheim $cWiley-VCH$d2013 215 $a1 online resource (206 p.) 300 $aDescription based upon print version of record. 311 $a3-527-41117-8 320 $aIncludes bibliographical references and index. 327 $aNonequilibrium Magnons: Theory, Experiment, and Applications; Contents; Preface; 1 Harmonic Oscillators and the Universal Language of Science; 1.1 Harmonic Oscillator; 1.1.1 Complex Canonical Variables; 1.2 Classical Rotation; 1.2.1 Classical Spin and Magnetic Resonance; 1.3 Collective Variables and Harmonic Oscillators in k-space; 1.3.1 Chain of Masses and Springs; 1.3.2 Chain of Magnetic Particles; 1.4 Discussion; 2 Magnons in Ferromagnets and Antiferromagnets; 2.1 Phenomenological Description; 2.1.1 Magnons in a Ferromagnet; 2.1.1.1 Holstein-Primakoff Transformation 327 $a2.1.1.2 The Spectrum of Magnons2.2 Microscopic Modeling; 2.2.1 Magnons in a Two-Sublattice Antiferromagnet; 2.2.1.1 Hamiltonian; 2.2.1.2 Spectrum of Magnons; 2.2.2 Magnon-Magnon Interactions; 2.3 Nuclear Magnons; 2.4 Magnetoelastic Waves, Quasi Phonons; 2.5 Discussion; 3 Relaxation of Magnons; 3.1 Master Equation; 3.2 Relaxation of Bose Quasi Particles; 3.2.1 Relaxation Process of Harmonic Oscillators; 3.2.2 Magnon-Electron Scattering; 3.3 Relaxation via an Intermediate Damped Dynamic System; 3.4 Ferromagnetic Resonance Linewidth; 3.5 Magnons and Macroscopic Dynamic Equation 327 $a3.5.1 Linearized Landau-Lifshitz Equation3.6 Relaxation of Coupled Oscillations; 3.6.1 Example 1: Nuclear Magnons; 3.6.2 Example 2: Magnetoelastic Oscillations; 3.7 Discussion; 4 Microwave Pumping of Magnons; 4.1 Linear Theory; 4.1.1 Ferromagnetic Resonance; 4.1.2 Threshold of Parametric Resonance; 4.2 Parametric Resonance in a Resonator Cavity; 4.3 Nonlinear SR Theory; 4.4 Experimental Techniques; 4.5 Experimental Results; 4.5.1 Equivalent Circuit; 4.5.2 SR Theory and Experiment; 4.5.2.1 Modulation Response; 4.6 Discussion; 5 Thermodynamic Description of Strongly Excited Magnon System 327 $a6.2 Quasi Equilibrium Magnons6.2.1 Ideal Gas of Quasi Equilibrium Magnons; 6.2.2 Example: Isotropic Spectrum; 6.2.3 Kinetic Equations; 6.2.3.1 The Case of Teff = T; 6.2.4 Magnon System with Bose Condensate; 6.2.5 Magnetodipole Emission of Condensate; 6.3 Fro?hlich Coherence; 6.4 Discussion; 7 Magnons in an Ultrathin Film; 7.1 Model; 7.1.1 Magnetic Energy; 7.2 Magnons; 7.2.1 Magnon Interactions; 7.2.2 Effective Four-Magnon Interactions; 7.3 Example; 7.4 Discussion; 8 Collective Magnetic Dynamics in Nanoparticles; 8.1 Long-Lived States in a Cluster of Coupled Nuclear Spins; 8.2 Electronic Spins 327 $a8.3 Spin-Echo Logic Operations 330 $aThis much-needed book addresses the concepts, models, experiments and applications of magnons and spin wave in magnetic devices. It fills the gap in the current literature by providing the theoretical and technological framework needed to develop innovative magnetic devices, such as recording devices and sensors. Starting with a historical review of developments in the magnon concept, and including original experimental results, the author presents methods of magnon excitation, and several basic models to describe magnon gas. He includes experiments on Bose-Einstein condensation of 606 $aMagnons 615 0$aMagnons. 676 $a530.1595 676 $a530.411 700 $aSafonov$b Vladimir L$01640808 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830703103321 996 $aNonequilibrium magnons$93984526 997 $aUNINA