LEADER 05227oam 22012854 450 001 9910787666903321 005 20230803031301.0 010 $a1-4755-1674-6 010 $a1-4755-2757-8 010 $a1-4755-2898-1 035 $a(CKB)2670000000420169 035 $a(EBL)1587763 035 $a(SSID)ssj0001075265 035 $a(PQKBManifestationID)11691874 035 $a(PQKBTitleCode)TC0001075265 035 $a(PQKBWorkID)11244140 035 $a(PQKB)10901284 035 $a(MiAaPQ)EBC1587763 035 $a(Au-PeEL)EBL1587763 035 $a(CaPaEBR)ebr10739396 035 $a(CaONFJC)MIL485926 035 $a(OCoLC)842885120 035 $a(IMF)BCFSEE 035 $a(IMF)BCFSEA 035 $a(EXLCZ)992670000000420169 100 $a20020129d2013 uf 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBuilding a Common Future in Southern Africa /$fJoannes Mongardini, Tamon Asonuma, Olivier Basdevant, Alfredo Cuevas, Xavier Debrun, Lars Engstrom, Imelda Flores Vazquez, Vitaliy Kramarenko, Lamin Leigh, Paul Masson, Genevieve Verdier 210 1$aWashington, D.C. :$cInternational Monetary Fund,$d2013. 215 $a1 online resource (140 p.) 300 $aDescription based upon print version of record. 311 $a1-61635-399-6 320 $aIncludes bibliographical references. 327 $aCover; Contents; Foreword; Preface; Acknowledgments; Abbreviations; 1 The Economics of Regional Integration: Current Challenges and Future Opportunities for Southern Africa; 2 The Benefits of Trade Integration in the Southern African Customs Union; 3 Southern African Customs Union Revenue Volatility: Roots and Options for Mitigation; 4 Designing Fiscal Policies within the Southern African Customs Union; 5 Welfare Effects of Monetary Integration: The Common Monetary Area and Beyond; 6 Closing the Jobs Gap in the Southern African Customs Union; References; The Authors; Index 330 3 $aThe Southern African Customs Union (SACU) is the oldest customs union in the world, with significant opportunities ahead for creating higher economic growth and increased welfare benefits to the people of the region, by fulfilling its vision to become an economic community with a common market and monetary union. This volume describes policy options to address the barriers to equitable and sustainable development in the region and outlines a plan for deeper regional integration. 410 0$aBooks 606 $aCustoms unions$zAfrica, Southern 606 $aRegionalism$zAfrica, Southern 606 $aExports and Imports$2imf 606 $aLabor$2imf 606 $aMacroeconomics$2imf 606 $aMoney and Monetary Policy$2imf 606 $aPublic Finance$2imf 606 $aUnemployment: Models, Duration, Incidence, and Job Search$2imf 606 $aFinancial Aspects of Economic Integration$2imf 606 $aFiscal Policy$2imf 606 $aTrade: General$2imf 606 $aDemand and Supply of Labor: General$2imf 606 $aTrade Policy$2imf 606 $aInternational Trade Organizations$2imf 606 $aInternational economics$2imf 606 $aLabour$2imf 606 $aincome economics$2imf 606 $aPublic finance & taxation$2imf 606 $aMonetary economics$2imf 606 $aMonetary unions$2imf 606 $aLabor markets$2imf 606 $aUnemployment$2imf 606 $aUnemployment rate$2imf 606 $aFiscal policy$2imf 606 $aEconomic integration$2imf 606 $aLabor market$2imf 606 $aExports$2imf 606 $aExpenditures, Public$2imf 607 $aAfrica, Southern$xEconomic integration 607 $aSouth Africa$2imf 615 0$aCustoms unions 615 0$aRegionalism 615 7$aExports and Imports 615 7$aLabor 615 7$aMacroeconomics 615 7$aMoney and Monetary Policy 615 7$aPublic Finance 615 7$aUnemployment: Models, Duration, Incidence, and Job Search 615 7$aFinancial Aspects of Economic Integration 615 7$aFiscal Policy 615 7$aTrade: General 615 7$aDemand and Supply of Labor: General 615 7$aTrade Policy 615 7$aInternational Trade Organizations 615 7$aInternational economics 615 7$aLabour 615 7$aincome economics 615 7$aPublic finance & taxation 615 7$aMonetary economics 615 7$aMonetary unions 615 7$aLabor markets 615 7$aUnemployment 615 7$aUnemployment rate 615 7$aFiscal policy 615 7$aEconomic integration 615 7$aLabor market 615 7$aExports 615 7$aExpenditures, Public 700 $aMongardini$b Joannes$01472708 701 $aAsonuma$b Tamon$01157565 701 $aBasdevant$b Olivier$01491229 701 $aCuevas$b Alfredo$01485157 701 $aDebrun$b Xavier$01464155 701 $aEngstrom$b Lars$0247737 701 $aFlores Vazquez$b Imelda$01497808 801 0$bDcWaIMF 906 $aBOOK 912 $a9910787666903321 996 $aBuilding a Common Future in Southern Africa$93723067 997 $aUNINA LEADER 11019nam 2200493 450 001 9910830688303321 005 20230109144307.0 010 $a3-527-82985-7 010 $a3-527-82983-0 010 $a3-527-82984-9 035 $a(MiAaPQ)EBC7070234 035 $a(Au-PeEL)EBL7070234 035 $a(CKB)24352858400041 035 $a(EXLCZ)9924352858400041 100 $a20230109d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aTwo-dimensional-materials-based membranes $epreparation, characterization, and applications /$fedited by Wanqin Jin and Gongping Liu 210 1$aWeinheim, Germany :$cWiley-VCH,$d[2022] 210 4$dİ2022 215 $a1 online resource (397 pages) 300 $aIncludes index. 311 08$aPrint version: Jin, Wanqin Two-Dimensional-Materials-Based Membranes Newark : John Wiley & Sons, Incorporated,c2022 9783527348480 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- References -- Chapter 2 Fabrication Methods for 2D Membranes -- 2.1 Introduction -- 2.2 Synthesis of Nanosheets -- 2.2.1 Top?Down Method -- 2.2.1.1 Mechanical?Force Exfoliation -- 2.2.1.2 Ion?Intercalation Exfoliation -- 2.2.1.3 Oxidation?Assisted Exfoliation -- 2.2.1.4 Selective?Etching Method -- 2.2.2 Bottom?Up Method -- 2.2.2.1 Chemical Vapor Deposition -- 2.2.2.2 Hydro/Solvothermal Synthesis -- 2.2.2.3 Interfacial Synthesis -- 2.3 Membrane Structures and Fabrication Methods -- 2.3.1 Two?Dimensional?Material Nanosheet Membranes -- 2.3.1.1 Zeolite Membrane -- 2.3.1.2 MOF Membrane -- 2.3.1.3 Porous Graphene Membrane -- 2.3.2 Two?Dimensional?Material Laminar Membranes -- 2.3.2.1 Assembly Strategies of Laminates -- 2.3.2.2 Nanostructure Controlling of Laminar Membranes -- 2.3.3 Two?Dimensional?Materials?Based Mixed?Matrix Membranes (MMMs) -- 2.3.3.1 Fabrication Methods of MMMs -- 2.3.3.2 Effect of Physicochemical Properties of 2D Fillers -- 2.3.4 Other Hybrid Membranes -- 2.4 Summary and Outlook -- References -- Chapter 3 Nanoporous Single?Layer Graphene Membranes for Gas Separation -- 3.1 Introduction -- 3.2 Gas?Separation Potential of N?SLG Membranes -- 3.3 Engineering Gas?Selective Vacancy Defects -- 3.3.1 Bottom?Up Synthesis of N?SLG -- 3.3.2 Postsynthetic Etching of SLG -- 3.3.2.1 Physical Etching Methods -- 3.3.2.2 Chemical Etching Techniques -- 3.4 Fabrication of Large?Area N?SLG Membranes -- 3.5 Summary and Outlook -- References -- Chapter 4 Graphene?Based Membranes for Water Separation -- 4.1 Introduction -- 4.2 Water Transport Mechanisms in Graphene?Based Membranes -- 4.2.1 Internal?Geometry?Mediated Transport -- 4.2.1.1 Size Effects -- 4.2.1.2 Length Effects -- 4.2.2 Surface?Chemistry?Mediated Transport -- 4.2.3 External?Environment?Mediated Transport. 327 $a4.2.3.1 Solution Chemistry Effects -- 4.2.3.2 Applied Pressure Effects -- 4.2.3.3 Applied Potential Effects -- 4.2.4 Guest?Material?Mediated Transport -- 4.2.4.1 Stabilizing Effects -- 4.2.4.2 Size?Controlling Effects -- 4.2.4.3 Surface?Chemistry?Modifying Effects -- 4.2.4.4 Smart Gating Effects -- 4.3 Graphene?based Membrane Water Separation Applications -- 4.3.1 Nanofiltration -- 4.3.2 Reverse Osmosis -- 4.3.3 Forward Osmosis -- 4.4 Conclusions and Perspectives -- References -- Chapter 5 Graphene?Based Membranes for Ions Separation -- 5.1 Introduction -- 5.2 Single?Layer Graphene -- 5.2.1 Theoretical Calculations -- 5.2.2 Experimental Validations -- 5.3 Graphene Oxide Membranes -- 5.3.1 Structure of Graphene Oxide and Graphene Oxide Membranes -- 5.3.2 Ultrafast Water Permeability -- 5.3.3 Ion Selectivity -- 5.3.4 Microstructure Optimization for Desalination -- 5.3.5 Interlayer Spacing Control for Desalination -- 5.3.5.1 Cross?Linking -- 5.3.5.2 Reduction -- 5.3.5.3 External Pressure -- 5.3.6 Charge Modification for Desalination -- 5.3.7 External Field Modulated Ion Transport -- 5.3.8 Ion Transport Through Planar GO Laminates -- 5.4 Summary and Perspective -- References -- Chapter 6 Graphene?Based Membranes for Pervaporation -- 6.1 Introduction -- 6.2 Mass?Transport Mechanism -- 6.2.1 Mass Transport in Pervaporation Process -- 6.2.2 Mass Transport in GO Membrane -- 6.3 Progresses in GO Membranes for Pervaporation -- 6.3.1 Controlling Self?Assembly Condition -- 6.3.2 Designing Graphene Oxide?Framework (GOF) Membrane -- 6.3.3 Assembly with Polymers -- 6.3.4 Intercalating Nanomaterials -- 6.3.5 Tuning Surface Structure -- 6.4 Summary and Perspective -- References -- Chapter 7 Two?Dimensional?Materials Membranes for Gas Separations -- 7.1 Introduction -- 7.2 2D?Materials Membranes -- 7.2.1 Zeolites -- 7.2.2 Graphene?Based Materials. 327 $a7.2.2.1 Nanoporous Graphene -- 7.2.2.2 Graphene Oxide -- 7.2.3 MOFs -- 7.2.4 COFs -- 7.2.5 g?C3N4 -- 7.2.6 MXenes -- 7.2.7 Other 2D Materials -- 7.3 Preparation of 2D Nanosheets -- 7.3.1 Top?Down Method -- 7.3.2 Bottom?Up Method -- 7.4 Preparation of 2D?Materials Membranes -- 7.4.1 Top?Down Method -- 7.4.1.1 Filtration?Assisted Assembly -- 7.4.1.2 Coating -- 7.4.1.3 Layer?by?Layer Assembly -- 7.4.2 Bottom?Up Method -- 7.5 Gas Separations -- 7.5.1 H2/CO2, H2/N2, and H2/CH4 Separations -- 7.5.2 CO2/N2 and CO2/CH4 Separations -- 7.5.3 Other Gas/Vapor Separations -- 7.6 Conclusions and Perspectives -- References -- Chapter 8 Layered Double Hydroxide Membranes for Versatile Separation Applications -- 8.1 Introduction on LDHs and LDH?Based Membranes -- 8.2 Strategy for LDH?Based Membrane Preparation -- 8.2.1 Solution?Based In Situ Growth -- 8.2.2 Post?Synthetic Deposition -- 8.2.3 Blending with Polymers -- 8.3 Research Progress on LDH?Based Membranes -- 8.3.1 Interlayer Gallery?Based Separation -- 8.3.1.1 Pristine Interlayer Gallery?Based Separation -- 8.3.1.2 Regenerated Interlayer Gallery?Based Separation -- 8.3.2 Geometric Shape?Based Separation -- 8.3.2.1 Geometric Shape?Based Gas Separation -- 8.3.2.2 Geometric Shape?Based Liquid Separation -- 8.3.2.3 Geometric Shape?Based Particulate Matter Capture -- 8.3.2.4 Geometric Shape?Based Sacrificing Templates -- 8.3.3 Unusual Thermal Behavior?Based Separation -- 8.3.4 Photocatalytic Activity?Based Separation -- 8.3.5 Positive Surface Charge?Based Separation -- 8.3.5.1 Positive Surface Charge?Based Ultrafiltration -- 8.3.5.2 Positive Surface Charge?Based Nanofiltration -- 8.3.5.3 Positive Surface Charge?Based Reverse Osmosis -- 8.3.5.4 Positive Surface Charge?Based Forward Osmosis -- 8.3.5.5 Positive Surface Charge?Based Nanocomposite Membranes -- 8.3.6 Hydrophilicity?Based Water Treatment. 327 $a8.3.6.1 Hydrophilicity?Based Microfiltration -- 8.3.6.2 Hydrophilicity?Based Ultrafiltration -- 8.3.6.3 Hydrophilicity?Based Nanofiltration -- 8.3.6.4 Hydrophilicity?Based Reverse Osmosis -- 8.3.6.5 Hydrophilicity?Based Forward Osmosis -- 8.4 Summary and Outlook -- References -- Chapter 9 MXene: A Novel Two?Dimensional Membrane Material for Molecular Separation -- 9.1 Introduction -- 9.2 Synthesis and Processing -- 9.2.1 Synthesis of Multilayered MXene Phases -- 9.2.2 Fabrication of Single MXene Flakes -- 9.2.3 Surface Properties of MXene Flakes -- 9.2.4 Preparation of MXene?Based Membranes -- 9.2.4.1 Drop?Coating -- 9.2.4.2 Spraying or Spinning Coating -- 9.2.4.3 Pressure?Assisted Filtration -- 9.3 MXene?Based Membranes for Molecular Separation -- 9.3.1 Liquid Separation -- 9.3.1.1 Desalination -- 9.3.1.2 Organic Solvent Nanofiltration -- 9.3.1.3 Pervaporation Solvent Dehydration -- 9.3.1.4 Dyes and Natural Organic Matter Rejection -- 9.3.1.5 Oil-Water Separation -- 9.3.2 Gas Separation -- 9.4 Conclusions and Perspective -- References -- Chapter 10 2D?Materials Mixed?Matrix Membranes -- 10.1 Introduction -- 10.2 Two?Dimensional Materials as Dispersed Phase of MMMs -- 10.2.1 Graphene Oxide (GO) -- 10.2.1.1 Increasing Molecular Transport Channels -- 10.2.1.2 Reducing Nonselective Defects -- 10.2.1.3 Introducing the Functional Sites for Facilitated Transport -- 10.2.2 Metal-Organic Frameworks (MOFs) -- 10.2.2.1 Increasing Molecular Transport Channels -- 10.2.2.2 Enhancing the Interfacial Compatibility Between Nanomaterials and Polymers -- 10.2.3 Covalent Organic Frameworks (COFs) -- 10.2.3.1 Increasing Molecule Transport Channels -- 10.2.3.2 Introducing Facilely?Tailored Functionality -- 10.2.3.3 Constructing Hierarchical Structures in MMMs -- 10.2.4 Other 2D Materials -- 10.2.4.1 Transition?Metal Dichalcogenides (TMDs). 327 $a10.2.4.2 Graphitic Carbon Nitride (g?C3N4) -- 10.2.4.3 MXenes -- 10.3 Two?Dimensional Material as Continuous Phase of MMMs -- 10.3.1 Graphene Oxide (GO) -- 10.3.1.1 Controlling Interlayer Spacing -- 10.3.1.2 Modulating the Physical/Chemical Microenvironment -- 10.3.2 Metal-Organic Framework (MOF) -- 10.3.2.1 Enhancing Processability and Stability of MOFs -- 10.3.2.2 Modulating the Physical/Chemical Microenvironment -- 10.3.3 Covalent Organic Frameworks (COFs) -- 10.3.3.1 Regulating the Physical/Chemical Microenvironment -- 10.3.3.2 Modulating Crystallinity, Porosity, Mechanical Properties -- 10.4 Conclusion and Outlook -- References -- Chapter 11 Transport Mechanism of 2D Membranes -- 11.1 Introduction -- 11.2 Fundamentals of Mass Transport Through Membranes -- 11.2.1 Transport Mechanism in Porous Membranes -- 11.2.2 Transport Mechanism in Nonporous Membranes -- 11.2.3 Transport Mechanism in Charged Membranes -- 11.2.4 Permeability-Selectivity Trade?Off for Polymers -- 11.3 Nanofluidic Transport Through Confined Dimensions -- 11.3.1 Confinement Architectures for Artificial Nanofluidic Systems -- 11.3.2 Continuum Modeling of Nanofluidic Transport in Confined Channels -- 11.3.3 Mechanisms of Nanofluidic Transport in Atomically Thin Nanopores -- 11.3.4 Effects of Electrical Double Layer in Nanofluidic Ion Transport -- 11.3.5 Various Confinement Effects in Nanofluidic Transport at the Subnanometer Scale -- 11.3.5.1 Molecular Rearrangement -- 11.3.5.2 Partial Dehydration or Desolvation -- 11.3.5.3 Electrical Effects -- 11.3.5.4 Quantum Effects -- 11.4 Unique Mass?Transport Properties in 2D Membranes: Structural Aspects -- 11.4.1 Nanoporous Atomically Thin 2D Membranes (NATMs) -- 11.4.2 Staked 2D Membranes with Laminar Structure -- 11.4.3 2D Materials?Embedded Mixed?Matrix Membranes (MMMs) -- 11.5 Summary and Outlook -- References. 327 $aChapter 12 Conclusions and Perspectives. 606 $aTwo-dimensional materials 615 0$aTwo-dimensional materials. 676 $a620.115 702 $aJin$b Wanqin$c(Chemical engineer), 702 $aLiu$b Gongping 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830688303321 996 $aTwo-dimensional-materials-based membranes$93929188 997 $aUNINA