LEADER 01237nam a22002893i 4500 001 991002359519707536 005 20040306175810.0 008 040407s1985 it |||||||||||||||||ita 035 $ab12910971-39ule_inst 035 $aARCHE-089059$9ExL 040 $aDip.to Scienze Storiche$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a314.45 110 2 $aIstat$0374421 245 10$aAgrigento /$cISTAT 260 $aRoma :$bISTAT,$c1985 300 $a1 v. ;$c30 cm 440 0$a6. Censimento generale dell'industria e del commercio, dei servizi e dell'artigianato, 26 ottobre 1981 : dati sulle caratteristiche strutturali delle imprese e delle unità locali : fascicoli provinciali ;$v2.1.84 650 4$aArtigianato$zAgrigento$xCensimenti$y1981 650 4$aSettore terziario$zAgrigento$xCensimenti$y1981 651 4$aAgrigento$xIndustria$xCensimenti$y1981 651 4$aAgrigento$xCommercio$xCensimenti$y1981 907 $a.b12910971$b02-04-14$c16-04-04 912 $a991002359519707536 945 $aLE009 ISTAT 6/2.84$g1$i2009000334656$lle009$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i13479593$z16-04-04 996 $aAgrigento$9303754 997 $aUNISALENTO 998 $ale009$b16-04-04$cm$da $e-$fita$git $h0$i1 LEADER 11019nam 2200493 450 001 9910830688303321 005 20230109144307.0 010 $a3-527-82985-7 010 $a3-527-82983-0 010 $a3-527-82984-9 035 $a(MiAaPQ)EBC7070234 035 $a(Au-PeEL)EBL7070234 035 $a(CKB)24352858400041 035 $a(EXLCZ)9924352858400041 100 $a20230109d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aTwo-dimensional-materials-based membranes $epreparation, characterization, and applications /$fedited by Wanqin Jin and Gongping Liu 210 1$aWeinheim, Germany :$cWiley-VCH,$d[2022] 210 4$d©2022 215 $a1 online resource (397 pages) 300 $aIncludes index. 311 08$aPrint version: Jin, Wanqin Two-Dimensional-Materials-Based Membranes Newark : John Wiley & Sons, Incorporated,c2022 9783527348480 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- References -- Chapter 2 Fabrication Methods for 2D Membranes -- 2.1 Introduction -- 2.2 Synthesis of Nanosheets -- 2.2.1 Top?Down Method -- 2.2.1.1 Mechanical?Force Exfoliation -- 2.2.1.2 Ion?Intercalation Exfoliation -- 2.2.1.3 Oxidation?Assisted Exfoliation -- 2.2.1.4 Selective?Etching Method -- 2.2.2 Bottom?Up Method -- 2.2.2.1 Chemical Vapor Deposition -- 2.2.2.2 Hydro/Solvothermal Synthesis -- 2.2.2.3 Interfacial Synthesis -- 2.3 Membrane Structures and Fabrication Methods -- 2.3.1 Two?Dimensional?Material Nanosheet Membranes -- 2.3.1.1 Zeolite Membrane -- 2.3.1.2 MOF Membrane -- 2.3.1.3 Porous Graphene Membrane -- 2.3.2 Two?Dimensional?Material Laminar Membranes -- 2.3.2.1 Assembly Strategies of Laminates -- 2.3.2.2 Nanostructure Controlling of Laminar Membranes -- 2.3.3 Two?Dimensional?Materials?Based Mixed?Matrix Membranes (MMMs) -- 2.3.3.1 Fabrication Methods of MMMs -- 2.3.3.2 Effect of Physicochemical Properties of 2D Fillers -- 2.3.4 Other Hybrid Membranes -- 2.4 Summary and Outlook -- References -- Chapter 3 Nanoporous Single?Layer Graphene Membranes for Gas Separation -- 3.1 Introduction -- 3.2 Gas?Separation Potential of N?SLG Membranes -- 3.3 Engineering Gas?Selective Vacancy Defects -- 3.3.1 Bottom?Up Synthesis of N?SLG -- 3.3.2 Postsynthetic Etching of SLG -- 3.3.2.1 Physical Etching Methods -- 3.3.2.2 Chemical Etching Techniques -- 3.4 Fabrication of Large?Area N?SLG Membranes -- 3.5 Summary and Outlook -- References -- Chapter 4 Graphene?Based Membranes for Water Separation -- 4.1 Introduction -- 4.2 Water Transport Mechanisms in Graphene?Based Membranes -- 4.2.1 Internal?Geometry?Mediated Transport -- 4.2.1.1 Size Effects -- 4.2.1.2 Length Effects -- 4.2.2 Surface?Chemistry?Mediated Transport -- 4.2.3 External?Environment?Mediated Transport. 327 $a4.2.3.1 Solution Chemistry Effects -- 4.2.3.2 Applied Pressure Effects -- 4.2.3.3 Applied Potential Effects -- 4.2.4 Guest?Material?Mediated Transport -- 4.2.4.1 Stabilizing Effects -- 4.2.4.2 Size?Controlling Effects -- 4.2.4.3 Surface?Chemistry?Modifying Effects -- 4.2.4.4 Smart Gating Effects -- 4.3 Graphene?based Membrane Water Separation Applications -- 4.3.1 Nanofiltration -- 4.3.2 Reverse Osmosis -- 4.3.3 Forward Osmosis -- 4.4 Conclusions and Perspectives -- References -- Chapter 5 Graphene?Based Membranes for Ions Separation -- 5.1 Introduction -- 5.2 Single?Layer Graphene -- 5.2.1 Theoretical Calculations -- 5.2.2 Experimental Validations -- 5.3 Graphene Oxide Membranes -- 5.3.1 Structure of Graphene Oxide and Graphene Oxide Membranes -- 5.3.2 Ultrafast Water Permeability -- 5.3.3 Ion Selectivity -- 5.3.4 Microstructure Optimization for Desalination -- 5.3.5 Interlayer Spacing Control for Desalination -- 5.3.5.1 Cross?Linking -- 5.3.5.2 Reduction -- 5.3.5.3 External Pressure -- 5.3.6 Charge Modification for Desalination -- 5.3.7 External Field Modulated Ion Transport -- 5.3.8 Ion Transport Through Planar GO Laminates -- 5.4 Summary and Perspective -- References -- Chapter 6 Graphene?Based Membranes for Pervaporation -- 6.1 Introduction -- 6.2 Mass?Transport Mechanism -- 6.2.1 Mass Transport in Pervaporation Process -- 6.2.2 Mass Transport in GO Membrane -- 6.3 Progresses in GO Membranes for Pervaporation -- 6.3.1 Controlling Self?Assembly Condition -- 6.3.2 Designing Graphene Oxide?Framework (GOF) Membrane -- 6.3.3 Assembly with Polymers -- 6.3.4 Intercalating Nanomaterials -- 6.3.5 Tuning Surface Structure -- 6.4 Summary and Perspective -- References -- Chapter 7 Two?Dimensional?Materials Membranes for Gas Separations -- 7.1 Introduction -- 7.2 2D?Materials Membranes -- 7.2.1 Zeolites -- 7.2.2 Graphene?Based Materials. 327 $a7.2.2.1 Nanoporous Graphene -- 7.2.2.2 Graphene Oxide -- 7.2.3 MOFs -- 7.2.4 COFs -- 7.2.5 g?C3N4 -- 7.2.6 MXenes -- 7.2.7 Other 2D Materials -- 7.3 Preparation of 2D Nanosheets -- 7.3.1 Top?Down Method -- 7.3.2 Bottom?Up Method -- 7.4 Preparation of 2D?Materials Membranes -- 7.4.1 Top?Down Method -- 7.4.1.1 Filtration?Assisted Assembly -- 7.4.1.2 Coating -- 7.4.1.3 Layer?by?Layer Assembly -- 7.4.2 Bottom?Up Method -- 7.5 Gas Separations -- 7.5.1 H2/CO2, H2/N2, and H2/CH4 Separations -- 7.5.2 CO2/N2 and CO2/CH4 Separations -- 7.5.3 Other Gas/Vapor Separations -- 7.6 Conclusions and Perspectives -- References -- Chapter 8 Layered Double Hydroxide Membranes for Versatile Separation Applications -- 8.1 Introduction on LDHs and LDH?Based Membranes -- 8.2 Strategy for LDH?Based Membrane Preparation -- 8.2.1 Solution?Based In Situ Growth -- 8.2.2 Post?Synthetic Deposition -- 8.2.3 Blending with Polymers -- 8.3 Research Progress on LDH?Based Membranes -- 8.3.1 Interlayer Gallery?Based Separation -- 8.3.1.1 Pristine Interlayer Gallery?Based Separation -- 8.3.1.2 Regenerated Interlayer Gallery?Based Separation -- 8.3.2 Geometric Shape?Based Separation -- 8.3.2.1 Geometric Shape?Based Gas Separation -- 8.3.2.2 Geometric Shape?Based Liquid Separation -- 8.3.2.3 Geometric Shape?Based Particulate Matter Capture -- 8.3.2.4 Geometric Shape?Based Sacrificing Templates -- 8.3.3 Unusual Thermal Behavior?Based Separation -- 8.3.4 Photocatalytic Activity?Based Separation -- 8.3.5 Positive Surface Charge?Based Separation -- 8.3.5.1 Positive Surface Charge?Based Ultrafiltration -- 8.3.5.2 Positive Surface Charge?Based Nanofiltration -- 8.3.5.3 Positive Surface Charge?Based Reverse Osmosis -- 8.3.5.4 Positive Surface Charge?Based Forward Osmosis -- 8.3.5.5 Positive Surface Charge?Based Nanocomposite Membranes -- 8.3.6 Hydrophilicity?Based Water Treatment. 327 $a8.3.6.1 Hydrophilicity?Based Microfiltration -- 8.3.6.2 Hydrophilicity?Based Ultrafiltration -- 8.3.6.3 Hydrophilicity?Based Nanofiltration -- 8.3.6.4 Hydrophilicity?Based Reverse Osmosis -- 8.3.6.5 Hydrophilicity?Based Forward Osmosis -- 8.4 Summary and Outlook -- References -- Chapter 9 MXene: A Novel Two?Dimensional Membrane Material for Molecular Separation -- 9.1 Introduction -- 9.2 Synthesis and Processing -- 9.2.1 Synthesis of Multilayered MXene Phases -- 9.2.2 Fabrication of Single MXene Flakes -- 9.2.3 Surface Properties of MXene Flakes -- 9.2.4 Preparation of MXene?Based Membranes -- 9.2.4.1 Drop?Coating -- 9.2.4.2 Spraying or Spinning Coating -- 9.2.4.3 Pressure?Assisted Filtration -- 9.3 MXene?Based Membranes for Molecular Separation -- 9.3.1 Liquid Separation -- 9.3.1.1 Desalination -- 9.3.1.2 Organic Solvent Nanofiltration -- 9.3.1.3 Pervaporation Solvent Dehydration -- 9.3.1.4 Dyes and Natural Organic Matter Rejection -- 9.3.1.5 Oil-Water Separation -- 9.3.2 Gas Separation -- 9.4 Conclusions and Perspective -- References -- Chapter 10 2D?Materials Mixed?Matrix Membranes -- 10.1 Introduction -- 10.2 Two?Dimensional Materials as Dispersed Phase of MMMs -- 10.2.1 Graphene Oxide (GO) -- 10.2.1.1 Increasing Molecular Transport Channels -- 10.2.1.2 Reducing Nonselective Defects -- 10.2.1.3 Introducing the Functional Sites for Facilitated Transport -- 10.2.2 Metal-Organic Frameworks (MOFs) -- 10.2.2.1 Increasing Molecular Transport Channels -- 10.2.2.2 Enhancing the Interfacial Compatibility Between Nanomaterials and Polymers -- 10.2.3 Covalent Organic Frameworks (COFs) -- 10.2.3.1 Increasing Molecule Transport Channels -- 10.2.3.2 Introducing Facilely?Tailored Functionality -- 10.2.3.3 Constructing Hierarchical Structures in MMMs -- 10.2.4 Other 2D Materials -- 10.2.4.1 Transition?Metal Dichalcogenides (TMDs). 327 $a10.2.4.2 Graphitic Carbon Nitride (g?C3N4) -- 10.2.4.3 MXenes -- 10.3 Two?Dimensional Material as Continuous Phase of MMMs -- 10.3.1 Graphene Oxide (GO) -- 10.3.1.1 Controlling Interlayer Spacing -- 10.3.1.2 Modulating the Physical/Chemical Microenvironment -- 10.3.2 Metal-Organic Framework (MOF) -- 10.3.2.1 Enhancing Processability and Stability of MOFs -- 10.3.2.2 Modulating the Physical/Chemical Microenvironment -- 10.3.3 Covalent Organic Frameworks (COFs) -- 10.3.3.1 Regulating the Physical/Chemical Microenvironment -- 10.3.3.2 Modulating Crystallinity, Porosity, Mechanical Properties -- 10.4 Conclusion and Outlook -- References -- Chapter 11 Transport Mechanism of 2D Membranes -- 11.1 Introduction -- 11.2 Fundamentals of Mass Transport Through Membranes -- 11.2.1 Transport Mechanism in Porous Membranes -- 11.2.2 Transport Mechanism in Nonporous Membranes -- 11.2.3 Transport Mechanism in Charged Membranes -- 11.2.4 Permeability-Selectivity Trade?Off for Polymers -- 11.3 Nanofluidic Transport Through Confined Dimensions -- 11.3.1 Confinement Architectures for Artificial Nanofluidic Systems -- 11.3.2 Continuum Modeling of Nanofluidic Transport in Confined Channels -- 11.3.3 Mechanisms of Nanofluidic Transport in Atomically Thin Nanopores -- 11.3.4 Effects of Electrical Double Layer in Nanofluidic Ion Transport -- 11.3.5 Various Confinement Effects in Nanofluidic Transport at the Subnanometer Scale -- 11.3.5.1 Molecular Rearrangement -- 11.3.5.2 Partial Dehydration or Desolvation -- 11.3.5.3 Electrical Effects -- 11.3.5.4 Quantum Effects -- 11.4 Unique Mass?Transport Properties in 2D Membranes: Structural Aspects -- 11.4.1 Nanoporous Atomically Thin 2D Membranes (NATMs) -- 11.4.2 Staked 2D Membranes with Laminar Structure -- 11.4.3 2D Materials?Embedded Mixed?Matrix Membranes (MMMs) -- 11.5 Summary and Outlook -- References. 327 $aChapter 12 Conclusions and Perspectives. 606 $aTwo-dimensional materials 615 0$aTwo-dimensional materials. 676 $a620.115 702 $aJin$b Wanqin$c(Chemical engineer), 702 $aLiu$b Gongping 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830688303321 996 $aTwo-dimensional-materials-based membranes$93929188 997 $aUNINA