LEADER 03221nam 2200685Ia 450 001 9910449981103321 005 20200520144314.0 010 $a9786612356681 010 $a0-520-92820-2 010 $a1-282-35668-2 010 $a1-59734-950-X 024 7 $a10.1525/9780520928206 035 $a(CKB)1000000000007942 035 $a(EBL)224795 035 $a(OCoLC)70754723 035 $a(SSID)ssj0000258575 035 $a(PQKBManifestationID)11222453 035 $a(PQKBTitleCode)TC0000258575 035 $a(PQKBWorkID)10256409 035 $a(PQKB)10092950 035 $a(MiAaPQ)EBC224795 035 $a(OCoLC)56081361 035 $a(MdBmJHUP)muse30717 035 $a(DE-B1597)518841 035 $a(DE-B1597)9780520928206 035 $a(Au-PeEL)EBL224795 035 $a(CaPaEBR)ebr10057116 035 $a(CaONFJC)MIL235668 035 $a(EXLCZ)991000000000007942 100 $a20030310d2004 ub 0 101 0 $aeng 135 $aur|||||||nn|n 181 $ctxt 182 $cc 183 $acr 200 10$aThing knowledge$b[electronic resource] $ea philosophy of scientific instruments /$fDavis Baird 210 $aBerkeley, Calif. $cUniversity of California Press$dc2004 215 $a1 online resource (297 p.) 300 $aDescription based upon print version of record. 311 $a0-520-23249-6 320 $aIncludes bibliographical references (p. 239-259) and index. 327 $aInstrument epistemology -- Models : representing things -- Working knowledge -- Encapsulating knowledge -- Instrumentation revolution -- Thing knowledge -- The thing-y-ness of things -- Between technology and science -- Instrumental objectivity -- The gift. 330 $aWestern philosophers have traditionally concentrated on theory as the means for expressing knowledge about a variety of phenomena. This absorbing book challenges this fundamental notion by showing how objects themselves, specifically scientific instruments, can express knowledge. As he considers numerous intriguing examples, Davis Baird gives us the tools to "read" the material products of science and technology and to understand their place in culture. Making a provocative and original challenge to our conception of knowledge itself, Thing Knowledge demands that we take a new look at theories of science and technology, knowledge, progress, and change. Baird considers a wide range of instruments, including Faraday's first electric motor, eighteenth-century mechanical models of the solar system, the cyclotron, various instruments developed by analytical chemists between 1930 and 1960, spectrometers, and more. 606 $aScientific apparatus and instruments 606 $aScience$xPhilosophy 606 $aScience$xTechnological innovations 608 $aElectronic books. 615 0$aScientific apparatus and instruments. 615 0$aScience$xPhilosophy. 615 0$aScience$xTechnological innovations. 676 $a502/.8/4 686 $aTB 2280$2rvk 700 $aBaird$b Davis$061630 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910449981103321 996 $aThing knowledge$92459534 997 $aUNINA LEADER 01328nam a2200361 i 4500 001 991000921469707536 005 20020507175913.0 008 961205s1975 de ||| | ger 020 $a354007404X 035 $ab1077614x-39ule_inst 035 $aLE01304356$9ExL 040 $aDip.to Matematica$beng 082 0 $a510.8 084 $aAMS 26B99 100 1 $aReimann, Hans Martin$0441264 245 10$aFunktionen beschränkter mittlerer Oszillation /$cHans Martin Reimann, Thomas Rychener 260 $aBerlin :$bSpringer-Verlag,$c1975 300 $avi, 141 p. :$bill. ;$c25 cm 490 1 $aLecture notes in mathematics,$x0075-8434 ;$v487 500 $aIncludes index 504 $aBibliography: p. [134]-138 650 0$aDuality theory 650 0$aFunctions 650 0$aFunctions of several variables 650 0$aPotential theory 650 0$aQuasiconformal mappings 700 1 $aRychener, Thomas$eauthor$4http://id.loc.gov/vocabulary/relators/aut$058558 907 $a.b1077614x$b29-07-19$c28-06-02 912 $a991000921469707536 945 $aLE013 26B REI11 (1975)$g1$i2013000066967$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10875037$z28-06-02 996 $aFunktionen beschrankter mittlerer oszillation$980884 997 $aUNISALENTO 998 $ale013$b01-01-96$cm$da $e-$fger$gde $h0$i1 LEADER 05394nam 2200649Ia 450 001 9910830663303321 005 20230721005802.0 010 $a1-282-16521-6 010 $a9786612165214 010 $a0-470-61141-3 010 $a0-470-39403-X 035 $a(CKB)2550000000005846 035 $a(EBL)477634 035 $a(OCoLC)520990452 035 $a(SSID)ssj0000337690 035 $a(PQKBManifestationID)11276867 035 $a(PQKBTitleCode)TC0000337690 035 $a(PQKBWorkID)10289321 035 $a(PQKB)11739093 035 $a(MiAaPQ)EBC477634 035 $a(EXLCZ)992550000000005846 100 $a20080605d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFinite element simulation of heat transfer$b[electronic resource] /$fJean-Michel Bergheau, Roland Fortunier 210 $aLondon $cISTE Ltd. ;$aHoboken, N.J. $cJ. Wiley$dc2008 215 $a1 online resource (281 p.) 225 1 $aISTE ;$vv.55 300 $aDescription based upon print version of record. 311 $a1-84821-053-1 320 $aIncludes bibliographical references and index. 327 $aFinite Element Simulation of Heat Transfer; Table of Contents; Introduction; PART 1. Steady State Conduction; Chapter 1. Problem Formulation; 1.1. Physical modeling; 1.1.1. Thermal equilibrium equation; 1.1.2. Fourier law; 1.1.3. Boundary conditions; 1.2. Mathematical analysis; 1.2.1. Weighted residual method; 1.2.2.Weak integral formulation; 1.3. Working example; 1.3.1. Physical modeling; 1.3.2. Direct methods; 1.3.2.1. Analytical integration; 1.3.2.2. The finite difference method; 1.3.3. Collocation methods; 1.3.3.1. Point collocation; 1.3.3.2. Sub-domain collocation; 1.3.4.Galerkin method 327 $a1.3.4.1. Polynomial functions1.3.4.2. Piecewise linear functions; Chapter 2. The Finite Element Method; 2.1. Finite element approximation; 2.1.1.Mesh; 2.1.2. Nodal approximation; 2.2.Discrete problem formulation; 2.2.1. Element quantities; 2.2.2. Assembly; 2.3. Solution; 2.3.1. Application of temperature boundary conditions; 2.3.2. Linear system solution; 2.3.2.1. Direct methods; 2.3.2.2. Iterative methods; 2.3.3. Storing the linear system matrix; 2.3.4. Analysis of results; 2.3.4.1. Smoothing the heat flux density; 2.3.4.2. Result accuracy; 2.4. Working example 327 $a2.4.1. Finite element approximation2.4.1.1.Mesh; 2.4.1.2. Nodal approximation; 2.4.2.Discrete problem formulation; 2.4.2.1. Element quantities; 2.4.2.2. Assembly; 2.4.3. Solution; 2.4.3.1. Application of boundary conditions; 2.4.3.2. Solution; Chapter 3. Isoparametric Finite Elements; 3.1. Definitions; 3.1.1. Reference element; 3.1.1.1. Triangular element with linear transformation functions; 3.1.1.2. Quadrangle element with linear transformation functions; 3.1.1.3. Quadrangle element with quadratic transformation functions; 3.1.2. Isoparametric elements 327 $a3.1.3. Interpolation function properties3.2. Calculation of element quantities; 3.2.1. Expression in the reference frame; 3.2.2. Gaussian quadrature; 3.2.2.1. 1D numerical integration; 3.2.2.2. 2D and 3D numerical integration; 3.3. Some finite elements; PART 2. Transient State, Non-linearities, Transport Phenomena; Chapter 4. Transient Heat Conduction; 4.1. Problem formulation; 4.1.1. The continuous problem; 4.1.2. Finite element approximation; 4.1.3. Linear case; 4.2.Time integration; 4.2.1. Modal method; 4.2.1.1. Determining the modal basis; 4.2.1.2. Projection on the modal basis 327 $a4.2.2.Direct time integration4.2.3. Accuracy and stability of a direct integration algorithm; 4.2.3.1. Accuracy; 4.2.3.2. Stability; 4.2.3.3. Simplified analysis of the stability condition; 4.2.4. Practical complementary rules; 4.2.4.1. Space oscillations during thermal shock simulation; 4.2.4.2. Discrete maximum principle; 4.2.4.3. Initial temperatures during thermal contact simulation; 4.3. Working example; 4.3.1. Physical modeling and approximation; 4.3.2. Numerical applications; Chapter 5. Non-linearities; 5.1. Formulation and solution techniques; 5.1.1. Formulation 327 $a5.1.2. Non-linear equation system solution methods 330 $aThis book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re 410 0$aISTE 606 $aHeat$xTransmission$xMathematical models 606 $aFinite element method 615 0$aHeat$xTransmission$xMathematical models. 615 0$aFinite element method. 676 $a621.402/2015118 676 $a621.4022015118 700 $aBergheau$b Jean-Michel$01639439 701 $aFortunier$b Roland$01639440 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830663303321 996 $aFinite element simulation of heat transfer$93982432 997 $aUNINA