LEADER 05453nam 2200673 a 450 001 9910830659903321 005 20230617041811.0 010 $a1-280-52015-9 010 $a9786610520152 010 $a3-527-60365-4 010 $a3-527-60500-2 035 $a(CKB)1000000000377342 035 $a(EBL)481652 035 $a(OCoLC)68618374 035 $a(SSID)ssj0000195455 035 $a(PQKBManifestationID)11157108 035 $a(PQKBTitleCode)TC0000195455 035 $a(PQKBWorkID)10131293 035 $a(PQKB)10522443 035 $a(MiAaPQ)EBC481652 035 $a(EXLCZ)991000000000377342 100 $a20040827d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe magnetic universe$b[electronic resource] $egeophysical and astrophysical dynamo theory /$fGu?nther Ru?diger and Rainer Hollerbach 210 $aWeinheim $cWiley-VCH$dc2004 215 $a1 online resource (346 p.) 300 $aDescription based upon print version of record. 311 $a3-527-40409-0 320 $aIncludes bibliographical references and index. 327 $aThe Magnetic Universe Geophysical and Astrophysical Dynamo Theory; Contents; Preface; 1 Introduction; 2 Earth and Planets; 2.1 Observational Overview; 2.1.1 Reversals; 2.1.2 Other Time-Variability; 2.2 Basic Equations and Parameters; 2.2.1 Anelastic and Boussinesq Equations; 2.2.2 Nondimensionalization; 2.3 Magnetoconvection; 2.3.1 Rotation or Magnetism Alone; 2.3.2 Rotation and Magnetism Together; 2.3.3 Weak versus Strong Fields; 2.3.4 Oscillatory Convection Modes; 2.4 Taylor's Constraint; 2.4.1 Taylor's Original Analysis; 2.4.2 Relaxation of Ro = E = 0 327 $a2.4.3 Taylor States versus Ekman States2.4.4 From Ekman States to Taylor States; 2.4.5 Torsional Oscillations; 2.4.6 ??-Dynamos; 2.4.7 Taylor's Constraint in the Anelastic Approximation; 2.5 Hydromagnetic Waves; 2.6 The Inner Core; 2.6.1 Stewartson Layers on C; 2.6.2 Nonaxisymmetric Shear Layers on C; 2.6.3 Finite Conductivity of the Inner Core; 2.6.4 Rotation of the Inner Core; 2.7 Numerical Simulations; 2.8 Magnetic Instabilities; 2.9 Other Planets; 2.9.1 Mercury, Venus and Mars; 2.9.2 Jupiter's Moons; 2.9.3 Jupiter and Saturn; 2.9.4 Uranus and Neptune; 3 Differential Rotation Theory 327 $a3.1 The Solar Rotation3.1.1 Torsional Oscillations; 3.1.2 Meridional Flow; 3.1.3 Ward's Correlation; 3.1.4 Stellar Observations; 3.2 Angular Momentum Transport in Convection Zones; 3.2.1 The Taylor Number Puzzle; 3.2.2 The ?-Effect; 3.2.3 The Eddy Viscosity Tensor; 3.2.4 Mean-Field Thermodynamics; 3.3 Differential Rotation and Meridional Circulation for Solar-Type Stars; 3.4 Kinetic Helicity and the DIV-CURL-Correlation; 3.5 Overshoot Region and the Tachocline; 3.5.1 The NIRVANA Code; 3.5.2 Penetration into the Stable Layer; 3.5.3 A Magnetic Theory of the Solar Tachocline 327 $a4 The Stellar Dynamo4.1 The Solar-Stellar Connection; 4.1.1 The Phase Relation; 4.1.2 The Nonlinear Cycle; 4.1.3 Parity; 4.1.4 Dynamo-related Stellar Observations; 4.1.5 The Flip-Flop Phenomenon; 4.1.6 More Cyclicities; 4.2 The ?-Tensor; 4.2.1 The Magnetic-Field Advection; 4.2.2 The Highly Anisotropic ?-Effect; 4.2.3 The Magnetic Quenching of the ?-Effect; 4.2.4 Weak-Compressible Turbulence; 4.3 Magnetic-Diffusivity Tensor and ?-Quenching; 4.3.1 The Eddy Diffusivity Tensor; 4.3.2 Sunspot Decay; 4.4 Mean-Field Stellar Dynamo Models; 4.4.1 The ?(2)-Dynamo; 4.4.2 The ??-Dynamo for Slow Rotation 327 $a4.4.3 Meridional Flow Influence4.5 The Solar Dynamo; 4.5.1 The Overshoot Dynamo; 4.5.2 The Advection-Dominated Dynamo; 4.6 Dynamos with Random ?; 4.6.1 A Turbulence Model; 4.6.2 Dynamo Models with Fluctuating ?-Effect; 4.7 Nonlinear Dynamo Models; 4.7.1 Malkus-Proctor Mechanism; 4.7.2 ?-Quenching; 4.7.3 Magnetic Saturation by Turbulent Pumping; 4.7.4 ?-Quenching; 4.8 ?-Quenching and Maunder Minimum; 5 The Magnetorotational Instability (MRI); 5.1 Star Formation; 5.1.1 Molecular Clouds; 5.1.2 The Angular Momentum Problem; 5.1.3 Turbulence and Planet Formation 327 $a5.2 Stability of Differential Rotation in Hydrodynamics 330 $aMagnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, the so-called dynamo effect. The precise details of what drives the motion, and indeed what the fluid consists of, differ widely though. In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore some of these phenomena, and describe the similarities and differences between different magnetized objects. They also explain why magn 606 $aDynamo theory (Cosmic physics) 606 $aCosmic magnetic fields 606 $aMagnetohydrodynamics 606 $aAstrophysics 615 0$aDynamo theory (Cosmic physics) 615 0$aCosmic magnetic fields. 615 0$aMagnetohydrodynamics. 615 0$aAstrophysics. 676 $a523.0188 676 $a523.01886 700 $aRu?diger$b G$g(Gu?nther)$052846 701 $aHollerbach$b Rainer$01635024 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830659903321 996 $aThe magnetic universe$93982410 997 $aUNINA