LEADER 05097nam 2200613Ia 450 001 9910830653003321 005 20230124182359.0 010 $a1-280-92170-6 010 $a9786610921706 010 $a3-527-61098-7 010 $a3-527-61099-5 035 $a(CKB)1000000000377594 035 $a(EBL)482024 035 $a(OCoLC)645308322 035 $a(SSID)ssj0000180224 035 $a(PQKBManifestationID)11165538 035 $a(PQKBTitleCode)TC0000180224 035 $a(PQKBWorkID)10148534 035 $a(PQKB)10595780 035 $a(MiAaPQ)EBC482024 035 $a(EXLCZ)991000000000377594 100 $a20061010d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aIntegral materials modeling$b[electronic resource] $etowards physics-based through-process models /$fedited by Gu nter Gottstein 210 $aWeinheim $cWiley-VCH ;$aChichester $cJohn Wiley [distributor]$d2007 215 $a1 online resource (317 p.) 300 $aDescription based upon print version of record. 311 $a3-527-31711-2 320 $aIncludes bibliographical references and index. 327 $aIntegral Materials Modeling; Contents; List of Contributors; 1 Introduction; 2 Integral Materials Modeling; Abstract; 2.1 Introduction; 2.2 The Collaborative Research Center on ''Integral Materials Modeling''; 2.3 Through-Process Modeling; 2.4 Outlook; References; 3 Aluminum Through-Process Modeling: From Casting to Cup Drawing (TP C6); Abstract; 3.1 Introduction; 3.2 Casting and Solidification; 3.2.1 The Casting Alloys; 3.2.1.1 Casting; 3.2.2 Simulation of the Casting Process; 3.2.2.1 Thermodynamic Description of the Model Alloy 327 $a3.2.2.2 Simulation of Grain Nucleation and Growth Using a Multiphase Flow and Solidification Model3.2.2.3 Simulation of Phase Fractions, Dendrite Arm Spacing, and Concentration Profiles Using a Microsegregation Model; 3.3 Homogenization; 3.3.1 Homogenization of Alloy AA3104; 3.3.2 Simulation Methods; 3.3.2.1 DICTRA Calculations; 3.3.2.2 ClaNG Model; 3.3.3 Experimental Procedure; 3.3.4 Comparison between Experimental and Simulation Results; 3.3.4.1 Primary Phases; 3.3.4.2 Solute Concentrations; 3.3.4.3 Dispersoid Precipitation; 3.4 Hot and Cold Rolling; 3.4.1 Flow Stress Modeling 327 $a3.4.2 Texture Simulation3.4.3 Recrystallization; 3.5 Cup Drawing; 3.5.1 Anisotropy Update; 3.5.2 Results; 3.6 Conclusions and Outlook; References; 4 From Casting to Product Properties: Modeling the Process Chain of Steels (TP C7); Abstract; 4.1 Introduction; 4.2 Continuous Casting Simulation; 4.3 Hot Rolling Simulation; 4.4 Simulation of Phase Transformation; 4.4.1 Physical Modeling of Isothermal Proeutectoid Ferrite Transformation; 4.4.2 Semiempirical Modeling of Phase Transformation; 4.5 Simulation of Mechanical Properties; 4.6 Welding Simulation; 4.7 Application; 4.8 Summary; References 327 $a5 Status of Through-Process Simulation for Coated Gas Turbine Components (TP C8)Abstract; 5.1 Introduction; 5.2 Solidification and Heat Treatment of the Nickel-Based Superalloy; 5.3 CVD Processing of an Alumina Interdiffusion Barrier; 5.4 Magnetron Sputter Process of NiCoCrAlY Corrosion-Protective Coating; 5.5 Atmospheric Plasma Spraying of Ceramic TBC; 5.6 Stress Response and Crack Formation at the Bond Coat/TBC Interface During Cyclic Thermal Loading; 5.7 Conclusions; References; 6 Deformation Behavior of a Plastics Pipe Fitting (TP C9); Abstract; 6.1 Introduction; 6.2 Aims and Procedure 327 $a6.3 Calculation of Local Inner Part Properties Using Extended Process Simulation6.3.1 Developed Software; 6.3.2 Temperature Field Calculation; 6.3.3 Calculation of Inner Properties; 6.3.4 Procedure of Simulating Inner Properties; 6.4 Integration of Inner Properties into Structural Analysis; 6.5 Conclusions and Perspectives; References; 7 Modeling of Flow Processes During Solidification (TP A1); Abstract; 7.1 Introduction; 7.1.1 Aluminum Cup; 7.1.2 Plastics Pipe Fitting; 7.1.3 Steel Profile; 7.2 Software Development; 7.2.1 Aluminum Cup; 7.2.2 Plastics Pipe Fitting; 7.2.3 Steel Profile 327 $a7.3 Experiments and Results 330 $aAdopting a holistic approach to materials simulation, this monograph covers four very important structural materials: aluminum, carbon steels, superalloys, and plastics. Following an introduction to the concept of integral modeling, the book goes on to cover a wide range of production steps and usage, including melt flow and solidification behavior, coating, shaping, thermal treatment, deep drawing, hardness and ductility, damage initiation, and deformation behavior. 606 $aMaterials science 606 $aMaterials 615 0$aMaterials science. 615 0$aMaterials. 676 $a620.11 676 $a620.1126 701 $aGottstein$b G.$f1944-$01444878 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830653003321 996 $aIntegral materials modeling$94071557 997 $aUNINA