LEADER 01241nam2 2200409 450 001 990005914640203316 005 20131206130759.0 010 $a2-86294-021-6 035 $a000591464 035 $aUSA01000591464 035 $a(ALEPH)000591464USA01 035 $a000591464 100 $a20131206d1979----km-y0itay50------ba 101 $afre 102 $aFR 105 $a||||||||001yy 200 1 $a<<1. :>> A-K$fCentre National de la Recherche Scientifique Institut de Recherche et d'Histoire des Texte 205 $a5. Ed. 210 $aParis [et.al.]$aMünchen$aNew York$cSaur$d1979 215 $aXI,426 p.$d30 cm 410 0$12001 454 1$12001 461 1$1001000591460$12001 606 0 $aMedievisti$xRepertori 676 $a116.5 712 02$aCentre national de la recherche scientifique$bInstitut de recherche et d'histoire des texte 801 0$aIT$bsalbc$gISBD 912 $a990005914640203316 951 $aVII.4.111/1$b666/1 DSLL 959 $aBK 969 $aDSLL 979 $aMARANO$b90$c20131206$lUSA01$h1259 979 $aMARANO$b90$c20131206$lUSA01$h1302 979 $aMARANO$b90$c20131206$lUSA01$h1303 979 $aMARANO$b90$c20131206$lUSA01$h1307 996 $aA-K$9989393 997 $aUNISA LEADER 02461oam 2200601I 450 001 9910451337803321 005 20200520144314.0 010 $a1-135-95439-9 010 $a1-135-95440-2 010 $a0-203-49993-X 010 $a1-280-05553-7 024 7 $a10.4324/9780203499931 035 $a(CKB)1000000000445998 035 $a(SSID)ssj0000312423 035 $a(PQKBManifestationID)11212360 035 $a(PQKBTitleCode)TC0000312423 035 $a(PQKBWorkID)10332673 035 $a(PQKB)10225839 035 $a(MiAaPQ)EBC182762 035 $a(Au-PeEL)EBL182762 035 $a(CaPaEBR)ebr10101242 035 $a(CaONFJC)MIL5553 035 $a(OCoLC)437055894 035 $a(OCoLC)826515872 035 $a(EXLCZ)991000000000445998 100 $a20130331d2003 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aUniversity autonomy in the Russian federation since Perestroika /$fOlga B. Bain 210 1$aNew York :$cRoutledgeFalmer,$d2003. 215 $axiii, 247 p 225 1 $aStudies in higher education, dissertation series 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-415-93296-3 311 $a0-203-60290-0 320 $aIncludes bibliographical references (p. 225-239) and index. 327 $tpart Part I. The Rise of Autonomy -- $tchapter 1 Introduction: Reforming Higher Education in Russia -- $tchapter 2 The Sources of Autonomy 46 /$rPart II. Regional and University Response -- $tpart PART II Regional and University Response -- $tchapter 3 Decentralization and Regional Autonomy -- $tchapter 4 The Trend toward Autonomy of Russian Institutions of Higher Education -- $tpart Part III. Pathways to Success -- $tchapter 5 St. Petersburg State University -- $tchapter 6 Novosibirsk State Technical University -- $tchapter 7 Kemerovo State University -- $tpart PART IV. CONCLUSION -- $tchapter 8 Discussion and Conclusions. 410 0$aStudies in higher education, dissertation series. 606 $aUniversity autonomy$zRussia (Federation) 608 $aElectronic books. 615 0$aUniversity autonomy 676 $a378.47 700 $aBain$b Olga B.$0887377 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910451337803321 996 $aUniversity autonomy in the Russian federation since Perestroika$91982442 997 $aUNINA LEADER 04716nam 2200625 a 450 001 9910830642703321 005 20230828214402.0 010 $a1-280-41143-0 010 $a9786610411436 010 $a0-470-32705-7 010 $a0-471-78008-1 010 $a0-471-78007-3 035 $a(CKB)1000000000354665 035 $a(EBL)257071 035 $a(OCoLC)71431446 035 $a(SSID)ssj0000110838 035 $a(PQKBManifestationID)11142744 035 $a(PQKBTitleCode)TC0000110838 035 $a(PQKBWorkID)10065552 035 $a(PQKB)11333831 035 $a(MiAaPQ)EBC257071 035 $a(EXLCZ)991000000000354665 100 $a20050725d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBeyond Born-Oppenheimer$b[electronic resource] $eelectronic non-adiabatic coupling terms and conical intersections /$fby Michael Baer 210 $aHoboken, N.J. $cWiley$dc2006 215 $a1 online resource (254 p.) 300 $aIncludes index 311 $a0-471-77891-5 327 $aBEYOND BORN-OPPENHEIMER; CONTENTS; PREFACE; ABBREVIATIONS; 1 MATHEMATICAL INTRODUCTION; 1.1 Hilbert Space; 1.1.1 Eigenfunction and Electronic Nonadiabatic Coupling Term; 1.1.2 Abelian and Non-Abelian Curl Equations; 1.1.3 Abelian and Non-Abelian Divergence Equations; 1.2 Hilbert Subspace; 1.3 Vectorial First-Order Differential Equation and Line Integral; 1.3.1 Vectorial First-Order Differential Equation; 1.3.1.1 Study of Abelian Case; 1.3.1.2 Study of Non-Abelian Case; 1.3.1.3 Orthogonality; 1.3.2 Integral Equation; 1.3.2.1 Integral Equation along an Open Contour 327 $a1.3.2.2 Integral Equation along a Closed Contour1.3.3 Solution of Differential Vector Equation; 1.4 Summary and Conclusions; Problem; References; 2 BORN-OPPENHEIMER APPROACH: DIABATIZATION AND TOPOLOGICAL MATRIX; 2.1 Time-Independent Treatment; 2.1.1 Adiabatic Representation; 2.1.2 Diabatic Representation; 2.1.3 Adiabatic-to-Diabatic Transformation; 2.1.3.1 Transformation for Electronic Basis Sets; 2.1.3.2 Transformation for Nuclear Wavefunctions; 2.1.3.3 Implications Due to Adiabatic-to-Diabatic Transformation; 2.1.3.4 Final Comments; 2.2 Application of Complex Eigenfunctions 327 $a2.2.1 Introducing Time-Independent Phase Factors2.2.1.1 Adiabatic Schro?dinger Equation; 2.2.1.2 Adiabatic-to-Diabatic Transformation; 2.2.2 Introducing Time-Dependent Phase Factors; 2.3 Time-Dependent Treatment; 2.3.1 Time-Dependent Perturbative Approach; 2.3.2 Time-Dependent Nonperturbative Approach; 2.3.2.1 Adiabatic Time-Dependent Electronic Basis Set; 2.3.2.2 Adiabatic Time-Dependent Nuclear Schro?dinger Equation; 2.3.2.3 Time-Dependent Adiabatic-to-Diabatic Transformation; 2.3.3 Summary; Problem; 2A Appendixes; 2A.1 Dressed Nonadiabatic Coupling Matrix 327 $a2A.2 Analyticity of Adiabatic-to-Diabatic Transformation Matrix A? in Spacetime ConfigurationReferences; 3 MODEL STUDIES; 3.1 Treatment of Analytical Models; 3.1.1 Two-State Systems; 3.1.1.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.1.2 Topological (D) Matrix; 3.1.1.3 The Diabatic Potential Matrix; 3.1.2 Three-State Systems; 3.1.2.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.2.2 Topological Matrix; 3.1.3 Four-State Systems; 3.1.3.1 Adiabatic-to-Diabatic Transformation Matrix; 3.1.3.2 Topological Matrix; 3.1.4 Comments Related to General Case 327 $a4.3 Quantization of Nonadiabatic Coupling Matrix: Study of Ab Initio Molecular Systems 330 $aINTRODUCING A POWERFUL APPROACH TO DEVELOPING RELIABLE QUANTUM MECHANICAL TREATMENTS OF A LARGE VARIETY OF PROCESSES IN MOLECULAR SYSTEMS.The Born-Oppenheimer approximation has been fundamental to calculation in molecular spectroscopy and molecular dynamics since the early days of quantum mechanics. This is despite well-established fact that it is often not valid due to conical intersections that give rise to strong nonadiabatic effects caused by singular nonadiabatic coupling terms (NACTs). In Beyond Born-Oppenheimer, Michael Baer, a leading authority on molecular scattering theory an 606 $aMolecular dynamics$xMathematics 606 $aBorn-Oppenheimer approximation 606 $aAdiabatic invariants 615 0$aMolecular dynamics$xMathematics. 615 0$aBorn-Oppenheimer approximation. 615 0$aAdiabatic invariants. 676 $a539.758 676 $a541/.28 700 $aBaer$b M$g(Michael),$f1937-$01653779 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830642703321 996 $aBeyond Born-Oppenheimer$94121000 997 $aUNINA