LEADER 05412nam 2200649 450 001 9910830573603321 005 20230125213428.0 010 $a1-282-34570-2 010 $a9786612345708 010 $a0-470-49505-7 010 $a0-470-49504-9 024 7 $a10.1002/9780470495056 035 $a(CKB)1000000000806449 035 $a(EBL)469513 035 $a(SSID)ssj0000337082 035 $a(PQKBManifestationID)11273641 035 $a(PQKBTitleCode)TC0000337082 035 $a(PQKBWorkID)10284208 035 $a(PQKB)10615833 035 $a(MiAaPQ)EBC469513 035 $a(CaBNVSL)mat05361036 035 $a(IDAMS)0b00006481178850 035 $a(IEEE)5361036 035 $a(OCoLC)476315734 035 $a(PPN)270696075 035 $a(EXLCZ)991000000000806449 100 $a20091209h20152009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aElectromagnetic fields in cavities $edeterministic and statistical theories /$fDavid A. Hill 210 1$aPiscataway, New Jersey :$cIEEE,$dc2009. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2009] 215 $a1 online resource (296 p.) 225 1 $aIEEE Press series on electromagnetic wave theory ;$v35 300 $aDescription based upon print version of record. 311 $a0-470-46590-5 320 $aIncludes bibliographical references and index. 327 $aPREFACE -- PART I. DETERMINISTIC THEORY -- 1. Introduction -- 1.1 Maxwell's Equations -- 1.2 Empty Cavity Modes -- 1.3 Wall Losses -- 1.4 Cavity Excitation -- 1.5 Perturbation Theories -- Problems -- 2. Rectangular Cavity -- 2.1 Resonant Modes -- 2.2 Wall Losses and Cavity Q -- 2.3 Dyadic Green's Functions -- Problems -- 3. Circular Cylindrical Cavity -- 3.1 Resonant Modes -- 3.2 Wall Losses and Cavity Q -- 3.3 Dyadic Green's Functions -- Problems -- 4. Spherical Cavity -- 4.1 Resonant Modes -- 4.2 Wall Losses and Cavity Q -- 4.3 Dyadic Green's Functions -- 4.4 Schumann Resonances in the Earth-Ionosphere Cavity -- Problems -- PART II. STATISTICAL THEORIES FOR ELECTRICALLY LARGE CAVITIES -- 5. Motivation for Statistical Approaches -- 5.1 Lack of Detailed Information -- 5.2 Sensitivity of Fields to Cavity Geometry and Excitation -- 5.3 Interpretation of Results -- Problems -- 6. Probability Fundamentals -- 6.1 Introduction -- 6.2 Probability Density Function -- 6.3 Common Probability Density Functions -- 6.4 Cumulative Distribution Function -- 6.5 Methods for Determining Probability Density Functions -- Problems -- 7. Reverberation Chambers -- 7.1 Plane-Wave Integral Representation of Fields -- 7.2 Ideal Statistical Properties of Electric and Magnetic Fields -- 7.3 Probability Density Functions for the Fields -- 7.4 Spatial Correlation Functions of Fields and Energy Density -- 7.5 Antenna or Test-Object Response -- 7.6 Loss Mechanisms and Chamber Q -- 7.7 Reciprocity and Radiated Emissions -- 7.8 Boundary Fields -- 7.9 Enhanced Backscatter at the Transmitting Antenna -- Problems -- 8. Aperture Excitation of Electrically Large, Lossy Cavities -- 8.1 Aperture Excitation -- 8.2 Power Balance -- 8.3 Experimental Results for SE -- Problems -- 9. Extensions to the Uniform-Field Model -- 9.1 Frequency Stirring -- 9.2 Unstirred Energy -- 9.3 Alternative Probability Density Function -- Problems -- 10. Further Applications of Reverberation Chambers -- 10.1 Nested Chambers for Shielding Effectiveness Measurements. 327 $a10.2 Evaluation of Shielded Enclosures -- 10.3 Measurement of Antenna Efficiency -- 10.4 Measurement of Absorption Cross Section -- Problems -- 11. Indoor Wireless Propagation -- 11.1 General Considerations -- 11.2 Path Loss Models -- 11.3 Temporal Characteristics -- 11.4 Angle of Arrival -- 11.5 Reverberation Chamber Simulation -- Problems -- APPENDIX A. VECTOR ANALYSIS -- APPENDIX B. ASSOCIATED LEGENDRE FUNCTIONS -- APPENDIX C. SPHERICAL BESSEL FUNCTIONS -- APPENDIX D. THE ROLE OF CHAOS IN CAVITY FIELDS -- APPENDIX E. SHORT ELECTRIC DIPOLE RESPONSE -- APPENDIX F. SMALL LOOP ANTENNA RESPONSE -- APPENDIX G. RAY THEORY FOR CHAMBER ANALYSIS -- APPENDIX H. ABSORPTION BY A HOMOGENEOUS SPHERE -- APPENDIX I. TRANSMISSION CROSS SECTION OF A SMALL CIRCULAR APERTURE -- APPENDIX J. SCALING -- REFERENCES -- INDEX. 330 $aA thorough and rigorous analysis of electromagnetic fields in cavities This book offers a comprehensive analysis of electromagnetic fields in cavities of general shapes and properties. Part One covers classical deterministic methods to conclude resonant frequencies, modal fields, and cavity losses; quality factor; mode bandwidth; and the excitation of cavity fields from arbitrary current distributions for metal-wall cavities of simple shape. Part Two covers modern statistical methods to analyze electrically large cavities of complex shapes and properties. Electr 410 0$aIEEE Press series on electromagnetic wave theory ;$v35 606 $aElectromagnetic fields 606 $aMaxwell equations$xNumerical solutions 615 0$aElectromagnetic fields. 615 0$aMaxwell equations$xNumerical solutions. 676 $a530.141 700 $aHill$b David A.$0845785 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910830573603321 996 $aElectromagnetic fields in cavities$91888189 997 $aUNINA