LEADER 01875nam 2200445 450 001 9910830570403321 005 20210114143130.0 010 $a1-119-48703-X 010 $a1-5231-3729-0 010 $a1-119-48702-1 010 $a1-119-48704-8 035 $a(CKB)4100000010870908 035 $a(MiAaPQ)EBC6317478 035 $a(PPN)255094981 035 $a(OCoLC)1159650070 035 $a(EXLCZ)994100000010870908 100 $a20210114d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aApplied biocatalysis $ethe chemist's enzyme toolbox /$fedited by John Whittall, Peter W. Sutton 210 1$aHoboken, New Jersey ;$aChichester, West Sussex, England :$cWiley,$d[2021] 210 4$dİ2021 215 $a1 online resource (xviii, 540 pages) $cillustrations 311 $a1-119-48701-3 330 $a"Biocatalysis has had a significant impact on the synthesis of active pharmaceutical ingredients (APIs) in recent years. The main driver for this is the ability to harness the regio- and stereoselectivity of enzymes to improve the efficiency of synthetic routes. For example, enzymes can offer direct access to enantiopure products, where traditional organic synthesis would require either resolution or the use of auxiliary groups [1], whilst applied enzymes have improved syntheses or generated molecules that would otherwise be either impossible or impractical to synthesise."--$cProvided by publisher. 606 $aBiocatalysis 615 0$aBiocatalysis. 676 $a660.2995 702 $aWhittall$b John 702 $aSutton$b Peter$g(Peter W.), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830570403321 996 $aApplied biocatalysis$94085322 997 $aUNINA