LEADER 04635nam 2200613Ia 450 001 9910830511003321 005 20180612234820.0 010 $a1-282-48269-6 010 $a9786612482694 010 $a3-527-62950-5 010 $a3-527-62951-3 035 $a(CKB)2550000000007396 035 $a(EBL)485695 035 $a(SSID)ssj0000363958 035 $a(PQKBManifestationID)11278417 035 $a(PQKBTitleCode)TC0000363958 035 $a(PQKBWorkID)10394279 035 $a(PQKB)10853206 035 $a(MiAaPQ)EBC485695 035 $a(OCoLC)663465086 035 $a(EXLCZ)992550000000007396 100 $a20100329d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aOptically pumped atoms$b[electronic resource] $ealkali-metal vapors for application /$fWilliam Happer, Yuan-Yu Jau, and Thad Walker 210 $aWeinheim $cWiley-VCH$d2010 215 $a1 online resource (248 p.) 300 $aDescription based upon print version of record. 311 $a3-527-40707-3 327 $aOptically Pumped Atoms; Contents; Preface; Index to Codes; 1 Introduction; 2 Alkali-Metal Atoms; 2.1 Electronic Energies; 2.2 Valence-Electron Wave Functions; 2.3 Hyperfine Structure; 3 Wave Functions and Schro?dinger Space; 3.1 Uncoupled States; 3.1.1 Kronecker Products; 3.1.2 Angular Momentum Matrices; 3.2 Energy States; 3.3 Zero-Field States; 4 Density Matrix and Liouville Space; 4.1 Purity and Entropy; 4.2 Ground State, Excited State, and Optical Coherence; 4.3 Column-Vector and Row-Vector Transforms; 4.3.1 Column-Vector Transforms; 4.3.2 Row-Vector Transforms; 4.3.3 Expectation Values 327 $a5.2.6 Amplitude D5.2.7 Energy Basis; 5.3 Spontaneous Emission; 5.4 Electric Dipole Interaction; 5.5 Rotating Coordinate System; 5.6 Net Evolution; 5.6.1 The Amagat Unit of Density; 5.6.2 Normalization; 5.6.3 Notation and Coding; 5.7 Optical Bloch Equations; 5.8 Liouville Space; 5.8.1 Transients; 5.8.2 Steady State; 5.8.3 Steady State Versus Detuning; 6 Quasi-Steady-State Optical Pumping; 6.1 Ground-State Evolution; 6.2 Excited-State Evolution; 6.3 Collisions; 6.4 Saturation; 6.5 Identities; 6.6 Net Evolution; 6.7 Negligible Stimulated Emission; 6.8 High-Pressure Pumping; 6.8.1 Liouville Space 327 $a6.9 Spectral Width of Pumping Light6.9.1 Gaussian Spectral Profiles; 6.9.2 Plasma Dispersion Function; 6.10 Doppler Broadening; 7 Modulation; 7.1 Magnetic Resonance; 7.2 Modulated Light; 7.2.1 High Pressure; 7.2.2 Lower Pressure; 7.2.3 Modulated Optical Pumping Matrices; 7.3 Secular Approximation; 7.4 Attenuation of Modulated Coherence in Passingthrough the Excited State; 7.5 Examples; 7.5.1 Isolated Magnetic Resonances; 7.5.2 Zeeman Magnetic Resonances; 7.5.3 Push-Pull Pumping; 8 Light Propagation; 8.1 Induced Electric Dipole Moment; 8.2 Absorption Cross Section; 8.3 Small Magnetic Fields 327 $a8.4 Evolution of a Beam in Space and Time8.5 First-Order Propagation Equation; 8.6 Propagation of Weak Probe Light; 8.7 Faraday Rotation; 8.8 Specific Absorption; 8.9 Fluorescent Light; 9 Radiation Forces; 9.1 Mean Force; 9.2 Forces from Monochromatic Light; 9.3 Forces in Magneto-Optical Traps; 9.3.1 Repump Lasers; 9.4 Pointing Probability; 9.5 Momentum Space; 9.6 Evolution in Spin-Momentum Space; 9.7 Liouville Space; 9.8 Compactification; 9.8.1 Compactified pq Space; 9.8.2 Compactification within a Tile; 9.9 Displays; 9.9.1 Momentum-Space Displays; 9.9.2 Position-Space Displays 327 $a9.10 Momentum Diffusion 330 $aCovering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa 606 $aOptical pumping 606 $aChemistry 615 0$aOptical pumping. 615 0$aChemistry. 676 $a539.7 686 $aUH 7600$2rvk 700 $aHapper$b William$027144 701 $aJau$b Yuan-Yu$01628716 701 $aWalker$b Thad$01628717 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830511003321 996 $aOptically pumped atoms$93965991 997 $aUNINA