LEADER 12081nam 2200613 450 001 9910830507603321 005 20231110231744.0 010 $a1-394-15688-X 010 $a1-394-15687-1 035 $a(MiAaPQ)EBC7121378 035 $a(Au-PeEL)EBL7121378 035 $a(CKB)25199391800041 035 $a(OCoLC)1349088895 035 $a(OCoLC-P)1349088895 035 $a(CaSebORM)9781119864929 035 $a(EXLCZ)9925199391800041 100 $a20230308d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aFuzzy computing in data science $eapplications and challenges /$fedited by Sachi Nandan Mohanty, Prasenjit Chatterjee and Bui Thanh Hung 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc.,$d[2023] 210 4$dİ2023 215 $a1 online resource (363 pages) 225 0 $aSmart and sustainable intelligent systems 311 08$aPrint version: Mohanty, Sachi Nandan Fuzzy Computing in Data Science Newark : John Wiley & Sons, Incorporated,c2022 9781119864929 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Chapter 1 Band Reduction of HSI Segmentation Using FCM -- 1.1 Introduction -- 1.2 Existing Method -- 1.2.1 K-Means Clustering Method -- 1.2.2 Fuzzy C-Means -- 1.2.3 Davies Bouldin Index -- 1.2.4 Data Set Description of HSI -- 1.3 Proposed Method -- 1.3.1 Hyperspectral Image Segmentation Using Enhanced Estimation of Centroid -- 1.3.2 Band Reduction Using K-Means Algorithm -- 1.3.3 Band Reduction Using Fuzzy C-Means -- 1.4 Experimental Results -- 1.4.1 DB Index Graph -- 1.4.2 K-Means-Based PSC (EEOC) -- 1.4.3 Fuzzy C-Means-Based PSC (EEOC) -- 1.5 Analysis of Results -- 1.6 Conclusions -- References -- Chapter 2 A Fuzzy Approach to Face Mask Detection -- 2.1 Introduction -- 2.2 Existing Work -- 2.3 The Proposed Framework -- 2.4 Set-Up and Libraries Used -- 2.5 Implementation -- 2.6 Results and Analysis -- 2.7 Conclusion and Future Work -- References -- Chapter 3 Application of Fuzzy Logic to the Healthcare Industry -- 3.1 Introduction -- 3.2 Background -- 3.3 Fuzzy Logic -- 3.4 Fuzzy Logic in Healthcare -- 3.5 Conclusions -- References -- Chapter 4 A Bibliometric Approach and Systematic Exploration of Global Research Activity on Fuzzy Logic in Scopus Database -- 4.1 Introduction -- 4.2 Data Extraction and Interpretation -- 4.3 Results and Discussion -- 4.3.1 Per Year Publication and Citation Count -- 4.3.2 Prominent Affiliations Contributing Toward Fuzzy Logic -- 4.3.3 Top Journals Emerging in Fuzzy Logic in Major Subject Areas -- 4.3.4 Major Contributing Countries Toward Fuzzy Research Articles -- 4.3.5 Prominent Authors Contribution Toward the Fuzzy Logic Analysis -- 4.3.6 Coauthorship of Authors -- 4.3.7 Cocitation Analysis of Cited Authors -- 4.3.8 Cooccurrence of Author Keywords. 327 $a4.4 Bibliographic Coupling of Documents, Sources, Authors, and Countries -- 4.4.1 Bibliographic Coupling of Documents -- 4.4.2 Bibliographic Coupling of Sources -- 4.4.3 Bibliographic Coupling of Authors -- 4.4.4 Bibliographic Coupling of Countries -- 4.5 Conclusion -- References -- Chapter 5 Fuzzy Decision Making in Predictive Analytics and Resource Scheduling -- 5.1 Introduction -- 5.2 History of Fuzzy Logic and Its Applications -- 5.3 Approximate Reasoning -- 5.4 Fuzzy Sets vs Classical Sets -- 5.5 Fuzzy Inference System -- 5.5.1 Characteristics of FIS -- 5.5.2 Working of FIS -- 5.5.3 Methods of FIS -- 5.6 Fuzzy Decision Trees -- 5.6.1 Characteristics of Decision Trees -- 5.6.2 Construction of Fuzzy Decision Trees -- 5.7 Fuzzy Logic as Applied to Resource Scheduling in a Cloud Environment -- 5.8 Conclusion -- References -- Chapter 6 Application of Fuzzy Logic and Machine Learning Concept in Sales Data Forecasting Decision Analytics Using ARIMA Model -- 6.1 Introduction -- 6.1.1 Aim and Scope -- 6.1.2 R-Tool -- 6.1.3 Application of Fuzzy Logic -- 6.1.4 Dataset -- 6.2 Model Study -- 6.2.1 Introduction to Machine Learning Method -- 6.2.2 Time Series Analysis -- 6.2.3 Components of a Time Series -- 6.2.4 Concepts of Stationary -- 6.2.5 Model Parsimony -- 6.3 Methodology -- 6.3.1 Exploratory Data Analysis -- 6.3.1.1 Seed Types-Analysis -- 6.3.1.2 Comparison of Location and Seeds -- 6.3.1.3 Comparison of Season (Month) and Seeds -- 6.3.2 Forecasting -- 6.3.2.1 Auto Regressive Integrated Moving Average (ARIMA) -- 6.3.2.2 Data Visualization -- 6.3.2.3 Implementation Model -- 6.4 Result Analysis -- 6.5 Conclusion -- References -- Chapter 7 Modified m-Polar Fuzzy Set ELECTRE-I Approach -- 7.1 Introduction -- 7.1.1 Objectives -- 7.2 Implementation of m-Polar Fuzzy ELECTRE-I Integrated Shannon's Entropy Weight Calculations. 327 $a7.2.1 The m-Polar Fuzzy ELECTRE-I Integrated Shannon's Entropy Weight Calculation Method -- 7.3 Application to Industrial Problems -- 7.3.1 Cutting Fluid Selection Problem -- 7.3.2 Results Obtained From m-Polar Fuzzy ELECTRE-I for Cutting Fluid Selection Problem -- 7.3.3 FMS Selection Problem -- 7.3.4 Results Obtained From m-Polar Fuzzy ELECTRE-I for FMS Selection -- 7.4 Conclusions -- References -- Chapter 8 Fuzzy Decision Making: Concept and Models -- 8.1 Introduction -- 8.2 Classical Set -- 8.3 Fuzzy Set -- 8.4 Properties of Fuzzy Set -- 8.5 Types of Decision Making -- 8.5.1 Individual Decision Making -- 8.5.2 Multiperson Decision Making -- 8.5.3 Multistage Decision Making -- 8.5.4 Multicriteria Decision Making -- 8.6 Methods of Multiattribute Decision Making (MADM) -- 8.6.1 Weighted Sum Method (WSM) -- 8.6.2 Weighted Product Method (WPM) -- 8.6.3 Weighted Aggregates Sum Product Assessment (WASPAS) -- 8.6.4 Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS) -- 8.7 Applications of Fuzzy Logic -- 8.8 Conclusion -- References -- Chapter 9 Use of Fuzzy Logic for Psychological Support to Migrant Workers of Southern Odisha (India) -- 9.1 Introduction -- 9.2 Objectives and Methodology -- 9.2.1 Objectives -- 9.2.2 Methodology -- 9.3 Effect of COVID-19 on the Psychology and Emotion of Repatriated Migrants -- 9.3.1 Psychological Variables Identified -- 9.3.2 Fuzzy Logic for Solace to Migrants -- 9.4 Findings -- 9.5 Way Out for Strengthening the Psychological Strength of the Migrant Workers through Technological Aid -- 9.6 Conclusion -- References -- Chapter 10 Fuzzy-Based Edge AI Approach: Smart Transformation of Healthcare for a Better Tomorrow -- 10.1 Significance of Machine Learning in Healthcare -- 10.2 Cloud-Based Artificial Intelligent Secure Models -- 10.3 Applications and Usage of Machine Learning in Healthcare. 327 $a10.3.1 Detecting Diseases and Diagnosis -- 10.3.2 Drug Detection and Manufacturing -- 10.3.3 Medical Imaging Analysis and Diagnosis -- 10.3.4 Personalized/Adapted Medicine -- 10.3.5 Behavioral Modification -- 10.3.6 Maintenance of Smart Health Data -- 10.3.7 Clinical Trial and Study -- 10.3.8 Crowdsourced Information Discovery -- 10.3.9 Enhanced Radiotherapy -- 10.3.10 Outbreak/Epidemic Prediction -- 10.4 Edge AI: For Smart Transformation of Healthcare -- 10.4.1 Role of Edge in Reshaping Healthcare -- 10.4.2 How AI Powers the Edge -- 10.5 Edge AI-Modernizing Human Machine Interface -- 10.5.1 Rural Medicine -- 10.5.2 Autonomous Monitoring of Hospital Rooms-A Case Study -- 10.6 Significance of Fuzzy in Healthcare -- 10.6.1 Fuzzy Logic-Outline -- 10.6.2 Fuzzy Logic-Based Smart Healthcare -- 10.6.3 Medical Diagnosis Using Fuzzy Logic for Decision Support Systems -- 10.6.4 Applications of Fuzzy Logic in Healthcare -- 10.7 Conclusion and Discussions -- References -- Chapter 11 Video Conferencing (VC) Software Selection Using Fuzzy TOPSIS -- 11.1 Introduction -- 11.2 Video Conferencing Software and Its Major Features -- 11.2.1 Video Conferencing/Meeting Software (VC/MS) for Higher Education Institutes -- 11.3 Fuzzy TOPSIS -- 11.3.1 Extension of TOPSIS Algorithm: Fuzzy TOPSIS -- 11.4 Sample Numerical Illustration -- 11.5 Conclusions -- References -- Chapter 12 Estimation of Nonperforming Assets of Indian Commercial Banks Using Fuzzy AHP and Goal Programming -- 12.1 Introduction -- 12.1.1 Basic Concepts of Fuzzy AHP and Goal Programming -- 12.2 Research Model -- 12.2.1 Average Growth Rate Calculation -- 12.3 Result and Discussion -- 12.4 Conclusion -- References -- Chapter 13 Evaluation of Ergonomic Design for the Visual Display Terminal Operator at Static Work Under FMCDM Environment -- 13.1 Introduction -- 13.2 Proposed Algorithm. 327 $a13.3 An Illustrative Example on Ergonomic Design Evaluation -- 13.4 Conclusions -- References -- Chapter 14 Optimization of Energy Generated from Ocean Wave Energy Using Fuzzy Logic -- 14.1 Introduction -- 14.2 Control Approach in Wave Energy Systems -- 14.3 Related Work -- 14.4 Mathematical Modeling for Energy Conversion from Ocean Waves -- 14.5 Proposed Methodology -- 14.5.1 Wave Parameters -- 14.5.2 Fuzzy-Optimizer -- 14.6 Conclusion -- References -- Chapter 15 The m-Polar Fuzzy TOPSIS Method for NTM Selection -- 15.1 Introduction -- 15.2 Literature Review -- 15.3 Methodology -- 15.3.1 Steps of the mFS TOPSIS -- 15.4 Case Study -- 15.4.1 Effect of Analytical Hierarchy Process (AHP) Weight Calculation on the mFS TOPSIS Method -- 15.4.2 Effect of Shannon's Entropy Weight Calculation on the m-Polar Fuzzy Set TOPSIS Method -- 15.5 Results and Discussions -- 15.5.1 Result Validation -- 15.6 Conclusions and Future Scope -- References -- Chapter 16 Comparative Analysis on Material Handling Device Selection Using Hybrid FMCDM Methodology -- 16.1 Introduction -- 16.2 MCDM Techniques -- 16.2.1 FAHP -- 16.2.2 Entropy Method as Weights (Influence) Evaluation Technique -- 16.3 The Proposed Hybrid and Super Hybrid FMCDM Approaches -- 16.3.1 TOPSIS -- 16.3.2 FMOORA Method -- 16.3.3 FVIKOR -- 16.3.4 Fuzzy Grey Theory (FGT) -- 16.3.5 COPRAS -G -- 16.3.6 Super Hybrid Algorithm -- 16.4 Illustrative Example -- 16.5 Results and Discussions -- 16.5.1 FTOPSIS -- 16.5.2 FMOORA -- 16.5.3 FVIKOR -- 16.5.4 Fuzzy Grey Theory (FGT) -- 16.5.5 COPRAS-G -- 16.5.6 Super Hybrid Approach (SHA) -- 16.6 Conclusions -- References -- Chapter 17 Fuzzy MCDM on CCPM for Decision Making: A Case Study -- 17.1 Introduction -- 17.2 Literature Review -- 17.3 Objective of Research -- 17.4 Cluster Analysis -- 17.4.1 Hierarchical Clustering -- 17.4.2 Partitional Clustering -- 17.5 Clustering. 327 $a17.6 Methodology. 330 $aFUZZY COMPUTING IN DATA SCIENCE This book comprehensively explains how to use various fuzzy-based models to solve real-time industrial challenges. The book provides information about fundamental aspects of the field and explores the myriad applications of fuzzy logic techniques and methods. It presents basic conceptual considerations and case studies of applications of fuzzy computation. It covers the fundamental concepts and techniques for system modeling, information processing, intelligent system design, decision analysis, statistical analysis, pattern recognition, automated learning, system control, and identification. The book also discusses the combination of fuzzy computation techniques with other computational intelligence approaches such as neural and evolutionary computation. Audience Researchers and students in computer science, artificial intelligence, machine learning, big data analytics, and information and communication technology. 410 0$aSmart and Sustainable Intelligent Systems 606 $aFuzzy logic 606 $aFuzzy systems 606 $aData mining 615 0$aFuzzy logic. 615 0$aFuzzy systems. 615 0$aData mining. 676 $a511.313 702 $aHung$b Bui Thanh 702 $aChatterjee$b Prasenjit 702 $aMohanty$b Sachi Nandan 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830507603321 996 $aFuzzy computing in data science$94119461 997 $aUNINA