LEADER 00950nam0-22003251i-450- 001 990006788920403321 005 20001010 035 $a000678892 035 $aFED01000678892 035 $a(Aleph)000678892FED01 035 $a000678892 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $a<>antagonismo anglo-tedesco$fPaul M. Kennedy$gtraduzione di Stefano Galli 210 $aMilano$cRizzoli$d1993. 215 $a840 p.$d21 cm 225 1 $aCollana storica Rizzoli$v 610 0 $aGran Bretagna e Germania - 1860-1914 610 0 $aGermania - Relazioni con la Gran Bretagna - 1860-1914 676 $a327.41043 700 1$aKennedy,$bPaul M.$0124864 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990006788920403321 952 $aXIV B 1401$b22536$fFSPBC 959 $aFSPBC 996 $aAntagonismo anglo-tedesco$9635893 997 $aUNINA DB $aGEN01 LEADER 01202nam a2200289 i 4500 001 991001792229707536 005 20020503153635.0 008 000908s1967 de ||| | lat 035 $ab10273463-39ule_inst 035 $aEXGIL91563$9ExL 040 $aBiblioteca Interfacoltà$bita 082 0 $a016.093 100 1 $aMaittaire, Michel$0465736 245 10$aAnnales typographici ab artis inventae origine ad annum MDCXIV. Suppl. 1.-2. /$cMichel Maittaire 260 $aGraz :$bAkademische Druck,$c1967 300 $a2 v. ;$c18 cm. 500 $aRipr. facs, dell'ed.: Vienna, 1789 650 4$aIncunaboli$xBibliografia 907 $a.b10273463$b02-04-14$c27-06-02 912 $a991001792229707536 945 $aLE002 SB 011.093 MAI 945 $aLE002 Bibl. IV D 7 I$cV. 1$g1$iLE002-41158/P4$lle002$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i10325086$z27-06-02 945 $aLE002 SB 011.093 MAI 945 $aLE002 Bibl. IV D 7 II$cV. 2$g1$iLE002-41159/P4$lle002$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i10325098$z27-06-02 996 $aAnnales typographici ab artis inventae origine ad annum MDCXIV. Suppl. 1.-2$9210682 997 $aUNISALENTO 998 $ale002$b01-01-00$cm$da $e-$flat$gde $h0$i2 LEADER 08772nam 2200601 450 001 9910830451403321 005 20240219150706.0 010 $a1-118-38330-3 010 $a1-283-59323-8 010 $a9786613905680 010 $a1-118-38331-1 024 7 $a10.1002/9781118383285 035 $a(CKB)2670000000239359 035 $a(EBL)894419 035 $a(MiAaPQ)EBC894419 035 $a(DLC) 2012040162 035 $a(CaBNVSL)mat06331041 035 $a(IDAMS)0b0000648193dda6 035 $a(IEEE)6331041 035 $a(OCoLC)810280109 035 $a(EXLCZ)992670000000239359 100 $a20151222d2012 uy 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aFrequency acquisition techniques for phase locked loop /$fauthor Daniel Talbot 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc.,$d[2012] 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2012] 215 $a1 online resource (238 p.) 300 $aDescription based upon print version of record. 311 $a1-118-38328-1 311 $a1-118-16810-0 320 $aIncludes bibliographical references and index. 327 $aPreface xi -- 1 Introduction 1 -- 2 A Review of PLL Fundamentals 3 -- 2.1 What is a PLL?, 3 -- 2.2 Second-Order PLL, 7 -- 2.3 Second-Order PLL Type One, 7 -- 2.4 Second-Order PLL Type Two, 7 -- 2.5 Higher-Order PLL's, 8 -- 2.6 Disturbances, 8 -- 2.7 Frequency Steering and Capture, 9 -- 2.8 Effect of DC Offsets or Noise Prior to the Loop Filter, 10 -- 2.9 Injection-Locked Oscillations, 15 -- 3 Simulating the PLL Linear Operation Mode 17 -- 3.1 Linear Model, 17 -- 3.2 A Word About Damping, 19 -- 4 Sideband Suppression Filtering 21 -- 4.1 Reference Sidebands and VCO Pushing, 21 -- 4.2 Superiority of the Cauer (or Elliptical) Filter, 22 -- 5 Pros and Cons of Sampled Data Phase Detection 25 -- 5.1 What are the Forms of Sampled Data Phase Detectors?, 25 -- 5.2 A. Ramp and Sample Analog Phase Detector, 25 -- 5.3 B. The RF Sampling Phase Detector, 28 -- 5.4 C. Edge-Triggered S-R Flip-Flop, 29 -- 5.5 D. Edge-Triggered Flip-Flop Ensemble, 31 -- 5.6 E. Sample and Hold as a Phase Detector, 31 -- 6 Phase Compression 33 -- 7 Hard Limiting of a Signal Plus Noise 35 -- 8 Phase Noise and Other Spurious Interferers 39 -- 8.1 The Mechanism for Phase Noise in an Oscillator, 42 -- 8.2 Additive Noise in an FM Channel and the Bowtie, 42 -- 8.3 Importance of FM Theory to Frequency Acquisition, 45 -- 9 Impulse Modulation and Noise Aliasing 47 -- 9.1 Impulse Train Spectrum, 47 -- 9.2 Sampling Phase Detector Noise, 47 -- 9.3 Spur Aliasing, 50 -- 10 Time and Phase Jitter, Heterodyning, and Multiplication 53 -- 10.1 Heterodyning and Resulting Time Jitter, 53 -- 10.2 Frequency Multiplication and Angle Modulation Index, 54 -- 10.3 Frequency Multiplication's Role in Carrier Recovery, 54 -- 11 Carrier Recovery Applications and Acquisition 57 -- 11.1 Frequency Multiplier Carrier Recovery in General, 57 -- 11.2 The Simplest Form of Costas PLL, 59 -- 11.3 Higher Level Quadrature Demodulation Costas PLL, 61 -- 11.4 False Lock in BPSK Costas PLL, 62 -- 11.5 Additional Measures for Prevention of False Locking, 65. 327 $a11.6 False Lock Prevention Using DC Offset, 72 -- 12 Notes on Sweep Methods 73 -- 12.1 Sweep Waveform Superimposed Directly on VCO Input, 73 -- 12.2 Maximum Sweep Rate (Acceleration), 74 -- 12.3 False Lock due to High-Order Filtering, 77 -- 12.4 Sweep Waveform Applied Directly to PLL Loop Integrator, 79 -- 12.5 Self-Sweeping PLL, 79 -- 13 Nonsweep Acquisition Methods 85 -- 13.1 Delay Line Frequency Discriminator, 85 -- 13.2 The Fully Unbalanced Quadricorrelator, 87 -- 13.3 The Fully Balanced Quadricorrelator, 88 -- 13.4 The Multipulse Balanced Quadricorrelator, 89 -- 13.5 Conclusion Regarding Pulsed Frequency Detection, 91 -- 13.6 Quadricorrelator Linearity, 92 -- 13.7 Limiter Asymmetry due to DC Offset, 97 -- 13.8 Taylor Series Demonstrates Second-Order-Caused DC Offset, 100 -- 13.9 Third-Order Intermodulation Distortion and Taylor Series, 101 -- 14 AM Rejection in Frequency Detection Schemes 105 -- 14.1 AM Rejection with Limiter and Interferer, 105 -- 14.2 AM Rejection of the Balanced Limiter/Quadricorrelator Versus the Limiter/Discriminator in the Presence of a Single Spur, 106 -- 14.3 Impairment due to Filter Response Tilt (Asymmetry), 110 -- 14.4 Bandpass Filter Geometric and Arithmetic Symmetry, 114 -- 14.5 Comments on Degree of Scrutiny, 117 -- 15 Interfacing the Frequency Discriminator to the PLL 119 -- 15.1 Continuous Connection: Pros and Cons, 119 -- 15.2 Connection to PLL via a Dead Band, 120 -- 15.3 Switched Connection, 121 -- 16 Actual Frequency Discriminator Implementations 125 -- 16.1 Quadricorrelator, Low-Frequency Implementation, 125 -- 16.2 Frequency Ratio Calculating Circuit for Wide-Bandwidth Use, 128 -- 16.3 Dividing the Frequency and Resultant Implementation, 131 -- 16.4 Marriage of Both Frequency and Phaselock Loops, 135 -- 16.5 Comments on Spurs' Numerical Influence on the VCO, 141 -- 16.6 Frequency Compression, 143 -- 17 Clock Recovery Using a PLL 145 -- 17.1 PLL Only, 145 -- 17.2 PLL with Sideband Crystal Filter(s), 152 -- 17.3 PLL with Sideband Cavity Filter, 153. 327 $a17.4 The Hogge Phase Detector, 161 -- 17.5 Bang-Bang Phase Detectors, 162 -- 18 Frequency Synthesis Applications 165 -- 18.1 Direct Frequency Synthesis with Wadley Loop, 166 -- 18.2 Indirect Frequency Synthesis with PLLs, 173 -- 18.3 Simple Frequency Acquisition Improvement for a PLL, 175 -- 18.4 Hybrid Frequency Synthesis with DDS and PLL, 176 -- 18.5 Phase Noise Considerations, 181 -- 18.6 Pros and Cons of DDS-Augmented Synthesis, 185 -- 18.7 Multiple Loops, 185 -- 18.8 Reference Signal Considerations and Filtering, 186 -- 18.9 SNR of Various Phase Detectors, 187 -- 18.10 Phase Detector Dead Band (Dead Zone) and Remediation, 187 -- 18.11 Sideband Energy due to DC Offset Following Phase Detector, 191 -- 18.12 Brute Force PLL Frequency Acquisition via Speedup, 193 -- 18.13 Short-Term and Long-Term Settling, 193 -- 18.14 N-over-M Synthesis, 193 -- 19 Injection Pulling of Multiple VCO's as in a Serdes 195 -- 19.1 Allowable Coupling Between any Two VCOs Versus Q and BW, 195 -- 19.2 Topology Suggestion for Eliminating the Injection Pulling, 195 -- 20 Digital PLL Example 199 -- 21 Conclusion 203 -- References 205 -- Index 209. 330 $aHow to acquire the input frequency from an unlocked stateA phase locked loop (PLL) by itself cannot become useful until it has acquired the applied signal's frequency. Often, a PLL will never reach frequency acquisition (capture) without explicit assistive circuits. Curiously, few books on PLLs treat the topic of frequency acquisition in any depth or detail. Frequency Acquisition Techniques for Phase Locked Loops offers a no-nonsense treatment that is equally useful for engineers, technicians, and managers.Since mathematical rigor for its own sake can degenerate into intellectual "rigor mortis," the author introduces readers to the basics and delivers useful information with clear language and minimal mathematics. With most of the approaches having been developed through years of experience, this completely practical guide explores methods for achieving the locked state in a variety of conditions as it examines:. Performance limitations of phase/frequency detector-based phase locked loops. The quadricorrelator method for both continuous and sampled modes. Sawtooth ramp-and-sample phase detector and how its waveform contains frequency error information that can be extracted. The benefits of a self-sweeping, self-extinguishing topology. Sweep methods using quadrature mixer-based lock detection. The use of digital implementations versus analogFrequency Acquisition Techniques for Phase Locked Loops is an important resource for RF/microwave engineers, in particular, circuit designers; practicing electronics engineers involved in frequency synthesis, phase locked loops, carrier or clock recovery loops, radio-frequency integrated circuit design, and aerospace electronics; and managers wanting to understand the technology of phase locked loops and frequency acquisition assistance techniques or jitter attenuating loops. 606 $aFrequency synthesizers 606 $aPhase-locked loops 615 0$aFrequency synthesizers. 615 0$aPhase-locked loops. 676 $a621.3815/486 676 $a621.382 700 $aTalbot$b Daniel$g(Daniel B.)$01621350 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910830451403321 996 $aFrequency acquisition techniques for phase locked loop$93954588 997 $aUNINA