LEADER 03456nam 2200541 450 001 9910813115003321 005 20200520144314.0 010 $a0-7303-2828-7 035 \\$a(Safari)9780730328278 035 $a(OCoLC)949422824 035 $a(Au-PeEL)EBL4354939 035 $a(CaPaEBR)ebr11149527 035 $a(CaONFJC)MIL890224 035 $a(OCoLC)923876389 035 $a(CaSebORM)9780730328278 035 $a(MiAaPQ)EBC4354939 035 $a(EXLCZ)993710000000576272 100 $a20160209h20162016 uy 0 101 0 $aeng 135 $aurunu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe light and fast organisation $ea new way of dealing with uncertainty /$fPatrick Hollingworth 205 $a1st edition 210 1$aMilton, Queensland :$cWiley,$d2016. 210 4$dİ2016 215 $a1 online resource (1 volume) $cillustrations 300 $aIncludes index. 311 $a0-7303-2827-9 330 $aCut the organisational and operational dead weight to climb higher, faster The Light and Fast Organisation presents a blueprint for organisations looking to thrive in today's rapidly evolving business landscape. VUCA - Volatility, Uncertainty, Complexity and Ambiguity - has become the dominant mode of modern business, and leaders are overwhelmed. Competition and instability has increased while barriers to entry have fallen, chronic employee disengagement is on the rise and the global economic recovery is incredibly fragile; business leaders are uncomfortable, with threats to their business looming on all sides. This book proposes an alternative to the VUCA paradigm, one in which we learn to be comfortable with being uncomfortable, and a model for helping your organisation climb above the fray. Case studies from both business and mountaineering illustrate the benefits and practicalities of becoming light, fast, and agile and underscore the importance of self-awareness and self-reliance in minimising your exposure to risk. Business and mountaineering share many parallels, including frequent operation outside of the comfort zone. This book shows you the strong skills and effective strategies you need to reach the summit. Get comfortable with discomfort Adopt an 'Alpine Style' approach to business Operate outside of the VUCA paradigm Stretch outside your comfort zone to achieve more, faster Leaders must accept the current VUCA state and assess their preparedness, but it's possible to move beyond it by ingraining a 'light and fast' approach at the core of their organisations' values and operations. It's only through reaching beyond the 'safe' zone that we learn what we're made of, and build the foundations for successful leadership and teamwork. The Light and Fast Organisation is your practical coach for climbing the mountain, and your guide to the quickest route to the summit. 606 $aOrganizational change$xManagement 606 $aLeadership 606 $aManagement 606 $aSuccess in business 615 0$aOrganizational change$xManagement. 615 0$aLeadership. 615 0$aManagement. 615 0$aSuccess in business. 676 $a658.406 700 $aHollingworth$b Patrick$01714899 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910813115003321 996 $aThe light and fast organisation$94109077 997 $aUNINA LEADER 10829nam 2200469 450 001 9910830442803321 005 20230508101346.0 010 $a1-119-88163-3 010 $a1-119-88161-7 035 $a(MiAaPQ)EBC7168984 035 $a(Au-PeEL)EBL7168984 035 $a(EXLCZ)9925945391300041 100 $a20230508d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPrinciples of laser materials processing $edevelopments and applications /$fElijah, Jr. Kannatey-Asibu 205 $aSecond edition. 210 1$aHoboken, New Jersey :$cWiley,$d[2023] 210 4$dİ2023 215 $a1 online resource (611 pages) 311 08$aPrint version: Kannatey-Asibu, Elijah, Jr. Principles of Laser Materials Processing Newark : John Wiley & Sons, Incorporated,c2023 9781119881605 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- PREFACE TO THE SECOND EDITION -- PREFACE TO THE FIRST EDITION -- ABOUT THE COMPANION WEBSITE -- Part I Principles of Industrial Lasers -- Chapter 1 Laser Background -- 1.1 Laser Generation -- 1.1.1 Atomic Transitions -- 1.1.2 Lifetime -- 1.1.3 Optical Absorption -- 1.1.4 Population Inversion -- 1.1.5 Threshold Gain -- 1.1.6 Two?Photon Absorption -- 1.2 Optical Resonators -- 1.2.1 Standing Waves In A Rectangular Cavity -- 1.2.2 Planar Resonators -- 1.2.3 Confocal Resonators -- 1.2.4 Concentric Resonators -- 1.3 Laser Pumping -- 1.3.1 Optical Pumping -- 1.3.2 Electrical Pumping -- 1.4 System Levels -- 1.4.1 Two?Level System -- 1.4.2 Three?Level System -- 1.5 Broadening Mechanisms -- 1.5.1 Line Shape Function -- 1.5.2 Line?Broadening Mechanisms -- 1.5.3 Comparison of Individual Mechanisms -- 1.6 Beam Modification -- 1.6.1 Quality Factor -- 1.6.2 Q?Switching -- 1.6.3 Mode Locking -- 1.7 Beam Characteristics -- 1.7.1 Beam Divergence -- 1.7.2 Monochromaticity -- 1.7.3 Beam Coherence -- 1.7.4 Intensity and Brightness -- 1.7.5 Focusing -- 1.8 Summary -- 1.8 Problems -- 1.8 Bibliography -- Chapter 2 Types of Lasers -- 2.1 SOLID?STATE LASERS -- 2.1.1 The Nd:YAG Laser -- 2.1.2 The Nd:Glass Laser -- 2.2 GAS LASERS -- 2.2.1 Neutral Atom Lasers -- 2.2.2 Ion Lasers -- 2.2.3 Molecular Gas Lasers -- 2.3 SEMICONDUCTOR (DIODE) LASERS -- 2.3.1 Semiconductor Background -- 2.3.2 Semiconductor Lasers -- 2.3.3 Semiconductor Laser Types -- 2.3.4 Low?Power Diode Lasers -- 2.3.5 High?Power Diode Lasers -- 2.3.6 Applications of High?Power Diode Lasers -- 2.4 NEW DEVELOPMENTS IN INDUSTRIAL LASER TECHNOLOGY -- 2.4.1 Slab Lasers -- 2.4.2 Disk Lasers -- 2.4.3 Ultrafast (Femtosecond) Lasers -- 2.4.4 Fiber Lasers -- 2.5 SUMMARY -- 2.5 Problems -- 2.5 Bibliography -- Chapter 3 Beam Delivery -- 3.1 The Electromagnetic Spectrum. 327 $a3.2 Birefringence -- 3.3 Brewster Angle -- 3.4 Polarization -- 3.5 Beam Expanders -- 3.6 Beam Splitters -- 3.7 Beam Delivery Systems -- 3.7.1 Conventional Beam Delivery -- 3.7.2 Fiber Optic Systems -- 3.8 Beam Shaping -- 3.8.1 Beam Shaping Using Diffractive Optics -- 3.8.2 Beam Shaping Using Coherent Beam Combining and Optical Phase Array -- 3.9 Summary -- 3.9 PROBLEMS -- 3.9 Bibliography -- Part II Engineering Background -- Chapter 4 Heat and Fluid Flow -- 4.1 Energy Balance During Processing -- 4.2 HEAT FLOW IN THE WORKPIECE -- 4.2.1 Temperature Distribution -- 4.2.2 Peak Temperatures -- 4.2.3 Cooling Rates -- 4.2.4 Gaussian Heat Source -- 4.2.5 The Two?Temperature Model -- 4.3 FLUID FLOW IN MOLTEN POOL -- 4.3.1 Continuity Equation -- 4.3.2 Navier-Stokes Equations -- 4.3.3 Surface Tension Effect -- 4.3.4 Free Surface Modeling -- 4.4 SUMMARY -- 4.4 Problems -- 4.4 BIBLIOGRAPHY -- Chapter 5 The Microstructure -- 5.1 PROCESS MICROSTRUCTURE -- 5.1.1 Fusion Zone -- 5.1.2 Zone of Partial Melting -- 5.1.3 Heat?Affected Zone -- 5.2 DISCONTINUITIES -- 5.2.1 Porosity -- 5.2.2 Cracking -- 5.2.3 Lack of Fusion -- 5.2.4 Incomplete Penetration -- 5.2.5 Undercut -- 5.3 SUMMARY -- 5.3 Problems -- 5.3 BIBLIOGRAPHY -- Chapter 6 Solidification -- 6.1 SOLIDIFICATION WITHOUT FLOW -- 6.1.1 Solidification of a Pure Metal -- 6.1.2 Solidification of a Binary Alloy -- 6.2 SOLIDIFICATION WITH FLOW -- 6.2.1 Mushy Fluid -- 6.2.2 Columnar Dendritic Structure -- 6.3 RAPID SOLIDIFICATION -- 6.4 SUMMARY -- 6.4 Problems -- 6.4 Bibliography -- Chapter 7 Residual Stresses and Distortion -- 7.1 CAUSES OF RESIDUAL STRESSES -- 7.1.1 Thermal Stresses -- 7.1.2 Nonuniform Plastic Deformation -- 7.2 BASIC STRESS ANALYSIS -- 7.2.1 Stress-Strain Relations -- 7.2.2 Plane Stress and Plane Strain -- 7.2.2 Solution: -- 7.3 EFFECTS OF RESIDUAL STRESSES -- 7.3.1 Apparent Change in Strength. 327 $a7.3.2 Distortion -- 7.4 MEASUREMENT OF RESIDUAL STRESSES -- 7.4.1 Stress Relaxation Techniques -- 7.4.1 Solution: -- 7.4.2 X?ray Diffraction Technique -- 7.4.3 Neutron Diffraction Technique -- 7.4.4 Residual Stress Equilibrium -- 7.4.4 Solution: -- 7.5 RELIEF OF RESIDUAL STRESSES AND DISTORTION -- 7.5.1 Thermal Treatments -- 7.5.2 Mechanical Treatments -- 7.6 SUMMARY -- 7.6 Problems -- 7.6 Bibliography -- Part III Laser Materials Processing -- Chapter 8 Background on Laser Processing -- 8.1 System?Related Parameters -- 8.1.1 Power and Power Density -- 8.1.2 Wavelength and Focusing -- 8.1.3 Beam Mode -- 8.1.4 Beam Form -- 8.1.5 Beam Quality -- 8.1.6 Beam Absorption -- 8.1.7 Beam Alignment -- 8.1.8 Motion Unit -- 8.2 Process Efficiency -- 8.3 Disturbances That Affect Process Quality -- 8.4 General Advantages and Disadvantages of Laser Processing -- 8.4.1 Advantages -- 8.4.2 Disadvantages -- 8.5 Summary -- 8.5 Problems -- 8.5 Bibliography -- Chapter 9 Laser Cutting and Drilling -- 9.1 Laser Cutting -- 9.1.1 Forms of Laser Cutting -- 9.1.2 Components of a Laser Cutting System -- 9.1.3 Processing Conditions -- 9.1.4 Laser Cutting Principles -- 9.1.5 Quality of Cut Part -- 9.1.6 Material Considerations -- 9.1.7 Advantages and Disadvantages of Laser Cutting -- 9.1.8 Specific Comparison with Conventional Processes -- 9.1.9 Special Techniques -- 9.2 Laser Drilling -- 9.2.1 Forms of Laser Drilling -- 9.2.2 Process Parameters -- 9.2.3 Analysis of Material Removal During Drilling -- 9.2.4 Advantages and Disadvantages of Laser Drilling -- 9.2.5 Applications -- 9.3 New Developments -- 9.3.1 Micromachining -- 9.3.2 Laser?Assisted Machining -- 9.4 Summary -- 9.4 Problems -- 9.4 BIBLIOGRAPHY -- Chapter 10 Laser Welding -- 10.1 Laser Welding Parameters -- 10.1.1 Beam Power and Traverse Speed -- 10.1.2 Effect of Beam Characteristics. 327 $a10.1.3 Plasma Formation, Gas Shielding, and Effect of Ambient Pressure -- 10.1.4 Beam Size and Focal Point Location -- 10.1.5 Joint Configuration -- 10.2 Welding Efficiency -- 10.3 Mechanism of Laser Welding -- 10.3.1 Conduction Mode Welding -- 10.3.2 Keyhole Welding -- 10.4 Material Considerations -- 10.4.1 Steels -- 10.4.2 Nonferrous Alloys -- 10.4.3 Ceramic Materials -- 10.4.4 Dissimilar Metals -- 10.5 Weldment Discontinuities -- 10.5.1 Porosity -- 10.5.2 Humping -- 10.6 Advantages and Disadvantages of Laser Welding -- 10.6.1 Advantages -- 10.6.2 Disadvantages -- 10.7 Special Techniques -- 10.7.1 Multiple?Beam Welding -- 10.7.2 Arc?Augmented Laser Welding -- 10.7.3 Wobble Welding -- 10.7.4 Remote Laser Welding -- 10.8 Specific Applications -- 10.8.1 Microwelding -- 10.8.2 Laser?Welded Tailored Blanks -- 10.8.3 Laser Transmission Welding of Plastics -- 10.8.4 Laser Brazing -- 10.9 Summary -- 10.9 Problems -- 10.9 Bibliography -- Chapter 11 Laser Surface Modification -- 11.1 Laser Surface Heat Treatment -- 11.1.1 Important Criteria -- 11.1.2 Key Process Parameters -- 11.1.3 Temperature Field -- 11.1.4 Microstructural Changes in Steels -- 11.1.5 Nonferrous Alloys -- 11.1.6 Hardness Variation -- 11.1.7 Residual Stresses -- 11.1.8 Semiconductors -- 11.1.9 Polymers -- 11.1.10 Advantages and Disadvantages of Laser Surface Treatment -- 11.2 Laser Surface Melting -- 11.3 Laser Direct Metal Deposition -- 11.3.1 Processing Parameters -- 11.3.2 Methods for Depositing the Material -- 11.3.3 Dilution -- 11.3.4 Advantages and Disadvantages of Laser Deposition -- 11.4 Laser Physical Vapor Deposition (LPVD) -- 11.5 Laser Shock Peening -- 11.5.1 Background Analysis -- 11.5.2 Thermal Relaxation at High Temperatures -- 11.5.3 Advantages and Disadvantages of Laser Shock Peening -- 11.5.4 Applications -- 11.6 Laser Texturing -- 11.7 Summary -- 11.7 Problems. 327 $a11.7 BIBLIOGRAPHY -- Chapter 12 Laser Forming -- 12.1 Principle of Laser Forming -- 12.2 Process Parameters -- 12.3 Laser?Forming Mechanisms -- 12.3.1 Temperature Gradient Mechanism -- 12.3.2 Buckling Mechanism -- 12.3.3 Upsetting Mechanism -- 12.3.4 Summary of the Forming Mechanisms -- 12.4 Process Analysis -- 12.5 Advantages and Disadvantages -- 12.5.1 Advantages -- 12.5.2 Disadvantages -- 12.6 Applications -- 12.7 Summary -- 12.7 Problems -- 12.7 Bibliography -- Chapter 13 Additive Manufacturing -- 13.1 Computer?Aided Design -- 13.1.1 Curve and Surface Design -- 13.1.2 Solid Modeling -- 13.1.3 Software Formats -- 13.1.4 Supports for Part Building -- 13.1.5 Slicing -- 13.2 Part Building -- 13.2.1 Liquid?Based Systems -- 13.2.2 Powder?Based Systems -- 13.2.3 Solid?Based Systems -- 13.2.4 Qualitative Comparison of Some Major Systems -- 13.3 Post?Processing -- 13.4 Applications -- 13.4.1 Design -- 13.4.2 Engineering, Analysis, and Planning -- 13.4.3 Manufacturing and Tooling -- 13.4.4 Personalized Production -- 13.5 Advantages and Disadvantages -- 13.5.1 Advantages -- 13.5.2 Disadvantages -- 13.6 Summary -- 13.6 Problems -- 13.6 Bibliography -- Chapter 14 Medical and Nanotechnology Applications of Lasers -- 14.1 Medical Applications -- 14.1.1 Medical Devices -- 14.1.2 Therapeutic Applications -- 14.2 Nanotechnology Applications -- 14.2.1 Nanoholes and Grating -- 14.2.2 Nanobumps -- 14.2.3 Laser?Assisted Nanoimprint Lithography -- 14.3 Summary -- 14.3 Bibliography -- Chapter 15 Sensors for Process Monitoring -- 15.1 Laser Beam Monitoring -- 15.1.1 Beam Power -- 15.1.2 Beam Mode -- 15.1.3 Beam Size -- 15.2 Process Monitoring -- 15.2.1 Acoustic Emission (AE) -- 15.2.2 Acoustic Mirror -- 15.2.3 Audible Sound (AS) Emission -- 15.2.4 Infrared/Ultraviolet (IR/UV) Detection Techniques -- 15.2.5 Optical (Vision) Sensing -- 15.3 Summary -- 15.3 Problems. 327 $a15.3 BIBLIOGRAPHY. 606 $aLasers$xIndustrial applications 615 0$aLasers$xIndustrial applications. 676 $a621.366 700 $aKannatey-Asibu$b E.$01341545 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830442803321 996 $aPrinciples of laser materials processing$94002621 997 $aUNINA