LEADER 05603nam 2200685 a 450 001 9910830439703321 005 20170816123757.0 010 $a1-118-60275-7 010 $a1-118-60276-5 010 $a1-118-60280-3 035 $a(CKB)2670000000336696 035 $a(EBL)1124672 035 $a(SSID)ssj0000831910 035 $a(PQKBManifestationID)11462092 035 $a(PQKBTitleCode)TC0000831910 035 $a(PQKBWorkID)10881243 035 $a(PQKB)10854713 035 $a(MiAaPQ)EBC1124672 035 $a(CaSebORM)9781118602805 035 $a(OCoLC)828424625 035 $a(EXLCZ)992670000000336696 100 $a20110916d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aFerroelectric dielectrics integrated on silicon$b[electronic resource] /$fedited by Emmanuel Defay 205 $a1st edition 210 $aLondon $cISTE Ltd. ;$aHoboken, N.J. $cJohn Wiley$d2011 215 $a1 online resource (464 p.) 225 1 $aISTE 300 $aAdapted and updated from: Dielectriques ferroelectriques integres sur silicium, published in France by Hermes Science/Lavoisier, 2011. 311 $a1-84821-313-1 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. The Thermodynamic Approach; 1.1. Background; 1.2. The functions of state; 1.3. Linear equations, piezoelectricity; 1.4. Nonlinear equations, electrostriction; 1.5. Thermodynamic modeling of the ferroelectric-paraelectricphase transition; 1.5.1. Assumption on the elastic Gibbs energy; 1.5.2. Second-order transition; 1.5.3. Effect of stress; 1.5.4. First-order transition; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Stress Effect on Thin Films; 2.1. Introduction; 2.2. Modeling the system under consideration 327 $a2.3. Temperature-misfit strain phase diagrams for monodomain films2.3.1. Phase diagram construction from the Landau-Ginzburg-Devonshire theory; 2.3.2. Calculations limitations; 2.4. Domain stability map; 2.4.1. Presentation and description of the framework of study; 2.4.2. Main contributions to the total energy of a film; 2.4.3. Influence of thickness; 2.4.4. Macroscopic elastic energy for each type of tetragonal domain; 2.4.5. Indirect interaction energy; 2.4.6. Domain structures at equilibrium; 2.4.7. Domain stability map; 2.5. Temperature-misfit strain phase diagram for polydomain films 327 $a2.6. Discussion of the nature of the "misfit strain"2.6.1. Mechanical misfit strain; 2.6.2. Thermodynamic misfit strain; 2.6.3. As an illustration; 2.7. Conclusion; 2.8. Experimental validation of phase diagrams: state of the art; 2.9. Case study; 2.10. Results; 2.10.1. Evolution of the lattice parameters; 2.10.2. Associated stresses and strains; 2.11. Comparison between the experimental data and the temperature-misfit strain phase diagrams; 2.11.1. Thin film of PZT; 2.11.2. Thin layer of PbTiO3; 2.12. Conclusion; 2.13. Bibliography; Chapter 3. Deposition and Patterning Technologies 327 $a3.1. Deposition method3.1.1. Cathodic sputtering; 3.1.2. Ion beam sputtering; 3.1.3. Pulsed laser deposition; 3.1.4. The sol-gel process; 3.1.5. The MOCVD; 3.1.6. Molecular beam epitaxy; 3.2. Etching; 3.2.1. Wet etching; 3.2.2. Dry etching; 3.3. Contamination; 3.4. Monocrystalline thin-film transfer; 3.4.1. Smart CutTM technology; 3.4.2. Bonding/thinning; 3.4.3. Interest in the material in a thin layer; 3.4.4. State of the art of the domain/applications; 3.4.5. An exemplary implementation; 3.5. Design of experiments; 3.5.1. The assumptions; 3.5.2. Reproducibility 327 $a3.5.3. How can we reduce the number of experiments?3.5.4. A DOE example: PZT RF magnetron sputtering deposition; 3.6. Conclusion; 3.7. Bibliography; Chapter 4. Analysis Through X-ray Diffraction of Polycrystalline Thin Films; 4.1. Introduction; 4.2. Some reminders of X-ray diffraction and crystallography; 4.2.1. Nature of X-rays; 4.2.2. X-ray scattering and diffraction; 4.3. Application to powder or polycrystalline thin-films; 4.4. Phase analysis by X-ray diffraction; 4.4.1. Grazing incidence diffraction; 4.4.2. De-texturing; 4.4.3. Quantitative analysis 327 $a4.5. Identification of coherent domain sizes of diffraction and micro-strains 330 $aThis book describes up-to-date technology applied to high-K materials for More Than Moore applications, i.e. microsystems applied to microelectronics core technologies.After detailing the basic thermodynamic theory applied to high-K dielectrics thin films including extrinsic effects, this book emphasizes the specificity of thin films. Deposition and patterning technologies are then presented. A whole chapter is dedicated to the major role played in the field by X-Ray Diffraction characterization, and other characterization techniques are also described such as Radio frequency characterizat 410 0$aISTE 606 $aFerroelectric thin films 606 $aSilicon$xElectric properties 606 $aElectric batteries$xCorrosion 615 0$aFerroelectric thin films. 615 0$aSilicon$xElectric properties. 615 0$aElectric batteries$xCorrosion. 676 $a621.3815/2 676 $a621.38152 700 $aDefa˙$b Emmanuel$0863199 701 $aDefay?$b Emmanuel$0863199 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830439703321 996 $aFerroelectric dielectrics integrated on silicon$94084710 997 $aUNINA