LEADER 05558nam 22006854a 450 001 9910830401703321 005 20170814180036.0 010 $a1-280-26970-7 010 $a9786610269709 010 $a0-470-34173-4 010 $a0-470-84619-4 010 $a0-470-85660-2 035 $a(CKB)111087027093250 035 $a(EBL)158119 035 $a(OCoLC)53841747 035 $a(SSID)ssj0000080493 035 $a(PQKBManifestationID)11120467 035 $a(PQKBTitleCode)TC0000080493 035 $a(PQKBWorkID)10095860 035 $a(PQKB)11098498 035 $a(MiAaPQ)EBC158119 035 $a(PPN)177278838 035 $a(EXLCZ)99111087027093250 100 $a20020529d2003 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRF MEMS and their applications$b[electronic resource] /$fVijay K. Varadan, K. J. Vinoy, K.A. Jose 210 $aWest Sussex, England ;$aHoboken, NJ $cJ. Wiley$dc2003 215 $a1 online resource (408 p.) 300 $aDescription based upon print version of record. 311 $a0-470-84308-X 320 $aIncludes bibliographical references and index. 327 $aRF MEMS and Their Applications; Contents; Preface; 1 Microelectromechanical systems (MEMS) and radio frequency MEMS; 1.1 Introduction; 1.2 MEMS; 1.3 Microfabrications for MEMS; 1.3.1 Bulk micromachining of silicon; 1.3.2 Surface micromachining of silicon; 1.3.3 Wafer bonding for MEMS; 1.3.4 LIGA process; 1.3.5 Micromachining of polymeric MEMS devices; 1.3.6 Three-dimensional microfabrications; 1.4 Electromechanical transducers; 1.4.1 Piezoelectric transducers; 1.4.2 Electrostrictive transducers; 1.4.3 Magnetostrictive transducers; 1.4.4 Electrostatic actuators 327 $a1.4.5 Electromagnetic transducers1.4.6 Electrodynamic transducers; 1.4.7 Electrothermal actuators; 1.4.8 Comparison of electromechanical actuation schemes; 1.5 Microsensing for MEMS; 1.5.1 Piezoresistive sensing; 1.5.2 Capacitive sensing; 1.5.3 Piezoelectric sensing; 1.5.4 Resonant sensing; 1.5.5 Surface acoustic wave sensors; 1.6 Materials for MEMS; 1.6.1 Metal and metal alloys for MEMS; 1.6.2 Polymers for MEMS; 1.6.3 Other materials for MEMS; 1.7 Scope of this book; References; 2 MEMS materials and fabrication techniques; 2.1 Metals; 2.1.1 Evaporation; 2.1.2 Sputtering; 2.2 Semiconductors 327 $a2.2.1 Electrical and chemical properties2.2.2 Growth and deposition; 2.3 Thin films for MEMS and their deposition techniques; 2.3.1 Oxide film formation by thermal oxidation; 2.3.2 Deposition of silicon dioxide and silicon nitride; 2.3.3 Polysilicon film deposition; 2.3.4 Ferroelectric thin films; 2.4 Materials for polymer MEMS; 2.4.1 Classification of polymers; 2.4.2 UV radiation curing; 2.4.3 SU-8 for polymer MEMS; 2.5 Bulk micromachining for silicon-based MEMS; 2.5.1 Isotropic and orientation-dependent wet etching; 2.5.2 Dry etching; 2.5.3 Buried oxide process; 2.5.4 Silicon fusion bonding 327 $a2.5.5 Anodic bonding2.6 Silicon surface micromachining; 2.6.1 Sacrificial layer technology; 2.6.2 Material systems in sacrificial layer technology; 2.6.3 Surface micromachining using plasma etching; 2.6.4 Combined integrated-circuit technology and anisotropic wet etching; 2.7 Microstereolithography for polymer MEMS; 2.7.1 Scanning method; 2.7.2 Two-photon microstereolithography; 2.7.3 Surface micromachining of polymer MEMS; 2.7.4 Projection method; 2.7.5 Polymeric MEMS architecture with silicon, metal and ceramics; 2.7.6 Microstereolithography integrated with thick-film lithography 327 $a2.8 ConclusionsReferences; 3 RF MEMS switches and micro relays; 3.1 Introduction; 3.2 Switch parameters; 3.3 Basics of switching; 3.3.1 Mechanical switches; 3.3.2 Electronic switches; 3.4 Switches for RF and microwave applications; 3.4.1 Mechanical RF switches; 3.4.2 PIN diode RF switches; 3.4.3 Metal oxide semiconductor field effect transistors and monolithic microwave integrated circuits; 3.4.4 RF MEMS switches; 3.4.5 Integration and biasing issues for RF switches; 3.5 Actuation mechanisms for MEMS devices; 3.5.1 Electrostatic switching; 3.5.2 Approaches for low-actuation-voltage switches 327 $a3.5.3 Mercury contact switches 330 $aMicroelectromechanical systems (MEMS) refer to a collection of micro-sensors and actuators, which can react to environmental change under micro- circuit control. The integration of MEMS into traditional Radio Frequency (RF) circuits has resulted in systems with superior performance levels and lower manufacturing costs. The incorporation of MEMS based fabrication technologies into micro and millimeter wave systems offers viable routes to ICs with MEMS actuators, antennas, switches and transmission lines. The resultant systems operate with an increased bandwidth and increased radiation efficienc 606 $aRadio circuits$xEquipment and supplies 606 $aMicroelectromechanical systems 606 $aMicrowave circuits 615 0$aRadio circuits$xEquipment and supplies. 615 0$aMicroelectromechanical systems. 615 0$aMicrowave circuits. 676 $a621.3815 676 $a621.38413 700 $aVaradan$b V. K.$f1943-$0719344 701 $aVinoy$b K. J$g(Kalarickaparambil Joseph),$f1969-$01641835 701 $aJose$b K. A$01641836 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830401703321 996 $aRF MEMS and their applications$93986182 997 $aUNINA