LEADER 02523nam 2200601 a 450 001 9910830397103321 005 20230124190829.0 010 $a1-118-60430-X 010 $a1-299-14154-4 010 $a1-118-60447-4 010 $a1-118-60360-5 035 $a(CKB)2670000000327427 035 $a(EBL)1117284 035 $a(OCoLC)827208456 035 $a(SSID)ssj0000822636 035 $a(PQKBManifestationID)11418080 035 $a(PQKBTitleCode)TC0000822636 035 $a(PQKBWorkID)10757090 035 $a(PQKB)11201244 035 $a(OCoLC)826652791 035 $a(MiAaPQ)EBC1117284 035 $a(EXLCZ)992670000000327427 100 $a20110608d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aTree-based graph partitioning constraint$b[electronic resource] /$fXavier Lorca 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$d2011 215 $a1 online resource (252 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-303-4 320 $aIncludes bibliographical references and index. 327 $apt. 1. Constraint programming and foundations of graph theory -- pt. 2. Characterization of tree-based graph partitioning constraints -- pt. 3. Implementation : task planning -- pt. 4. Conclusion and future work. 330 $aCombinatorial problems based on graph partitioning enable us to mathematically represent and model many practical applications. Mission planning and the routing problems occurring in logistics perfectly illustrate two such examples. Nevertheless, these problems are not based on the same partitioning pattern: generally, patterns like cycles, paths, or trees are distinguished. Moreover, the practical applications are often not limited to theoretical problems like the Hamiltonian path problem, or K-node disjoint path problems. Indeed, they usually combine the graph partitioning problem with sever 410 0$aISTE 606 $aConstraint programming (Computer science) 606 $aGraph theory 615 0$aConstraint programming (Computer science) 615 0$aGraph theory. 676 $a005.1/16 676 $a005.116 686 $aMAT029000$2bisacsh 700 $aLorca$b Xavier$01680981 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830397103321 996 $aTree-based graph partitioning constraint$94050073 997 $aUNINA