LEADER 05378nam 2200685Ia 450 001 9910830370703321 005 20170809170535.0 010 $a1-282-11265-1 010 $a9786612112652 010 $a0-470-37774-7 010 $a0-470-37779-8 035 $a(CKB)1000000000719508 035 $a(EBL)427670 035 $a(OCoLC)476269836 035 $a(SSID)ssj0000232883 035 $a(PQKBManifestationID)11220057 035 $a(PQKBTitleCode)TC0000232883 035 $a(PQKBWorkID)10219420 035 $a(PQKB)10202414 035 $a(MiAaPQ)EBC427670 035 $a(PPN)203761731 035 $a(EXLCZ)991000000000719508 100 $a20080215d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aReactive distillation design and control$b[electronic resource] /$fWilliam L. Luyben, Cheng-Ching Yu 210 $aHoboken, NJ $cJohn Wiley$dc2008 215 $a1 online resource (598 p.) 300 $aIncludes index. 311 $a0-470-22612-9 327 $aREACTIVE DISTILLATION DESIGN AND CONTROL; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 History; 1.2 Basics of Reactive Distillation; 1.3 Neat Operation Versus Excess Reactant; 1.4 Limitations; 1.4.1 Temperature Mismatch; 1.4.2 Unfavorable Volatilities; 1.4.3 Slow Reaction Rates; 1.4.4 Other Restrictions; 1.5 Scope; 1.6 Computational Methods; 1.6.1 Matlab Programs for Steady-State Design; 1.6.2 Aspen Simulations; 1.7 Reference Materials; PART I STEADY-STATE DESIGN OF IDEAL QUATERNARY SYSTEM; 2 PARAMETER EFFECTS; 2.1 Effect of Holdup on Reactive Trays; 2.2 Effect of Number of Reactive Trays 327 $a2.3 Effect of Pressure2.4 Effect of Chemical Equilibrium Constant; 2.5 Effect of Relative Volatilities; 2.5.1 Constant Relative Volatilities; 2.5.2 Temperature-Dependent Relative Volatilities; 2.6 Effect of Number of Stripping and Rectifying Trays; 2.7 Effect of Reactant Feed Location; 2.7.1 Reactant A Feed Location (N(FA)); 2.7.2 Reactant B Feed Location (N(FB)); 2.8 Conclusion; 3 ECONOMIC COMPARISON OF REACTIVE DISTILLATION WITH A CONVENTIONAL PROCESS; 3.1 Conventional Multiunit Process; 3.1.1 Assumptions and Specifications; 3.1.2 Steady-State Design Procedure 327 $a3.1.3 Sizing and Economic Equations3.2 Reactive Distillation Design; 3.2.1 Assumptions and Specifications; 3.2.2 Steady-State Design Procedure; 3.3 Results for Different Chemical Equilibrium Constants; 3.3.1 Conventional Process; 3.3.2 Reactive Distillation Process; 3.3.3 Comparisons; 3.4 Results for Temperature-Dependent Relative Volatilities; 3.4.1 Relative Volatilities; 3.4.2 Optimum Steady-State Designs; 3.4.3 Real Chemical Systems; 3.5 Conclusion; 4 NEAT OPERATION VERSUS USING EXCESS REACTANT; 4.1 Introduction; 4.2 Neat Reactive Column; 4.3 Two-Column System with Excess B 327 $a4.3.1 20% Excess B Case4.3.2 10% Excess B Case; 4.4 Two-Column System with 20% Excess of A; 4.5 Economic Comparison; 4.6 Conclusion; PART II STEADY-STATE DESIGN OF OTHER IDEAL SYSTEMS; 5 TERNARY REACTIVE DISTILLATION SYSTEMS; 5.1 Ternary System Without Inerts; 5.1.1 Column Configuration; 5.1.2 Chemistry and Phase Equilibrium Parameters; 5.1.3 Design Parameters and Procedure; 5.1.4 Effect of Pressure; 5.1.5 Holdup on Reactive Trays; 5.1.6 Number of Reactive Trays; 5.1.7 Number of Stripping Trays; 5.2 Ternary System With Inerts; 5.2.1 Column Configuration 327 $a5.2.2 Chemistry and Phase Equilibrium Parameters5.2.3 Design Parameters and Procedure; 5.2.4 Effect of Pressure; 5.2.5 Control Tray Composition; 5.2.6 Reactive Tray Holdup; 5.2.7 Effect of Reflux; 5.2.8 Chemical Equilibrium Constant; 5.2.9 Feed Composition; 5.2.10 Number of Reactive Trays; 5.2.11 Number of Rectifying and Stripping Trays; 5.3 Conclusion; 6 TERNARY DECOMPOSITION REACTION; 6.1 Ternary Decomposition Reaction: Intermediate-Boiling Reactant; 6.1.1 Column Configuration; 6.1.2 Chemistry and Phase Equilibrium Parameters; 6.1.3 Design Parameters and Procedure 327 $a6.1.4 Holdup on Reactive Trays 330 $aAfter an overview of the fundamentals, limitations, and scope of reactive distillation, this book uses rigorous models for steady-state design and dynamic analysis of different types of reactive distillation columns and quantitatively compares the economics of reactive distillation columns with conventional multi-unit processes. It goes beyond traditional steady-state design that primarily considers the capital investment and energy costs when analyzing the control structure and the dynamic robustness of disturbances, and discusses how to maximize the economic and environmental benefits of rea 606 $aDistillation apparatus$xDesign and construction 606 $aChemical process control 606 $aDistillation 606 $aReactivity (Chemistry) 615 0$aDistillation apparatus$xDesign and construction. 615 0$aChemical process control. 615 0$aDistillation. 615 0$aReactivity (Chemistry) 676 $a660 676 $a660.28425 676 $a660/.28425 700 $aLuyben$b William L$016520 701 $aYu$b Cheng-Ching$f1956-$01679498 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830370703321 996 $aReactive distillation design and control$94047770 997 $aUNINA