LEADER 01038nam0-2200301---450- 001 990009952310403321 005 20150409101514.0 035 $a000995231 035 $aFED01000995231 035 $a(Aleph)000995231FED01 035 $a000995231 100 $a20150408d1964----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $a<>garanzie personali delle obbligaziooni per debiti e crediti della eredità giacente$econtributi esegetici$fAldo Cenderelli 210 $aRoma$cPontificia universitas lateranensis$d1964 215 $ap. 114-178$d24 cm 300 $aEstratto da: Studia et documenta historiae et iuris, XXX-1964 700 1$aCenderelli,$bAldo$0151829 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009952310403321 952 $aDDR(E)-Cenderelli-1964$fDDR 952 $aDDR(E)-Cenderelli-1964 (al. es. 1)$fDDR 959 $aDDR 996 $aGaranzie personali delle obbligaziooni per debiti e crediti della eredità giacente$9821221 997 $aUNINA LEADER 05280nam 2200637 450 001 9910830316103321 005 20170809165348.0 010 $a1-282-78434-X 010 $a9786612784347 010 $a3-527-62158-X 010 $a3-527-62159-8 035 $a(CKB)1000000000441541 035 $a(EBL)481564 035 $a(OCoLC)609855348 035 $a(SSID)ssj0000353952 035 $a(PQKBManifestationID)11249007 035 $a(PQKBTitleCode)TC0000353952 035 $a(PQKBWorkID)10302028 035 $a(PQKB)10925855 035 $a(MiAaPQ)EBC481564 035 $a(PPN)188225668 035 $a(EXLCZ)991000000000441541 100 $a20160818h20082008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChemical process design $ecomputer-aided case studies /$fAlexandre C. Dimian and Costin Sorin Bildea 210 1$aWeinheim, [Germany] :$cWiley-VCH Verlag GmbH & Co. KGaA,$d2008. 210 4$d©2008 215 $a1 online resource (530 p.) 300 $aIncludes index. 311 $a3-527-31403-2 327 $aChemical Process Design; Contents; Preface; 1 Integrated Process Design; 1.1 Motivation and Objectives; 1.1.1 Innovation Through a Systematic Approach; 1.1.2 Learning by Case Studies; 1.1.3 Design Project; 1.2 Sustainable Process Design; 1.2.1 Sustainable Development; 1.2.2 Concepts of Environmental Protection; 1.2.2.1 Production-Integrated Environmental Protection; 1.2.2.2 End-of-pipe Antipollution Measures; 1.2.3 Efficiency of Raw Materials; 1.2.4 Metrics for Sustainability; 1.3 Integrated Process Design; 1.3.1 Economic Incentives; 1.3.2 Process Synthesis and Process Integration 327 $a1.3.3 Systematic Methods1.3.3.1 Hierarchical Approach; 1.3.3.2 Pinch-Point Analysis; 1.3.3.3 Residue Curve Maps; 1.3.3.4 Superstructure Optimization; 1.3.3.5 Controllability Analysis; 1.3.4 Life Cycle of a Design Project; 1.4 Summary; References; 2 Process Synthesis by Hierarchical Approach; 2.1 Hierarchical Approach of Process Design; 2.2 Basis of Design; 2.2.1 Economic Data; 2.2.2 Plant and Site Data; 2.2.3 Safety and Health Considerations; 2.2.4 Patents; 2.3 Chemistry and Thermodynamics; 2.3.1 Chemical-Reaction Network; 2.3.2 Chemical Equilibrium; 2.3.3 Reaction Engineering Data 327 $a2.3.4 Thermodynamic Analysis2.4 Input/Output Analysis; 2.4.1 Input/Output Structure; 2.4.1.1 Number of Outlet Streams; 2.4.1.2 Design Variables; 2.4.2 Overall Material Balance; 2.4.3 Economic Potential; 2.5 Reactor/Separation/Recycle Structure; 2.5.1 Material-Balance Envelope; 2.5.1.1 Excess of Reactant; 2.5.2 Nonlinear Behavior of Recycle Systems; 2.5.2.1 Inventory of Reactants and Make-up Strategies; 2.5.2.2 Snowball Effects; 2.5.2.3 Multiple Steady States; 2.5.2.4 Minimum Reactor Volume; 2.5.2.5 Control of Selectivity; 2.5.3 Reactor Selection; 2.5.3.1 Reactors for Homogeneous Systems 327 $a2.5.3.2 Reactors for Heterogeneous Systems2.5.4 Reactor-Design Issues; 2.5.4.1 Heat Effects; 2.5.4.2 Equilibrium Limitations; 2.5.4.3 Heat-Integrated Reactors; 2.5.4.4 Economic Aspects; 2.6 Separation System Design; 2.6.1 First Separation Step; 2.6.1.1 Gas/Liquid Systems; 2.6.1.2 Gas/Liquid/Solid Systems; 2.6.2 Superstructure of the Separation System; 2.7 Optimization of Material Balance; 2.8 Process Integration; 2.8.1 Pinch-Point Analysis; 2.8.1.1 The Overall Approach; 2.8.2 Optimal Use of Resources; 2.9 Integration of Design and Control; 2.10 Summary; References 327 $a3 Synthesis of Separation System3.1 Methodology; 3.2 Vapor Recovery and Gas-Separation System; 3.2.1 Separation Methods; 3.2.2 Split Sequencing; 3.3 Liquid-Separation System; 3.3.1 Separation Methods; 3.3.2 Split Sequencing; 3.4 Separation of Zeotropic Mixtures by Distillation; 3.4.1 Alternative Separation Sequences; 3.4.2 Heuristics for Sequencing; 3.4.3 Complex Columns; 3.4.4 Sequence Optimization; 3.5 Enhanced Distillation; 3.5.1 Extractive Distillation; 3.5.2 Chemically Enhanced Distillation; 3.5.3 Pressure-Swing Distillation; 3.6 Hybrid Separations; 3.7 Azeotropic Distillation 327 $a3.7.1 Residue Curve Maps 330 $aThis practical how-to-do book deals with the design of sustainable chemical processes by means of systematic methods aided by computer simulation. Ample case studies illustrate generic creative issues, as well as the efficient use of simulation techniques, with each one standing for an important issue taken from practice.The didactic approach guides readers from basic knowledge to mastering complex flow-sheets, starting with chemistry and thermodynamics, via process synthesis, efficient use of energy and waste minimization, right up to plant-wide control and process dynamics. The simul 606 $aChemical processes$xDesign$xData processing 606 $aComputer-aided design 615 0$aChemical processes$xDesign$xData processing. 615 0$aComputer-aided design. 676 $a660.28120285 676 $a660.2815 700 $aDimian$b Alexandre C.$0321316 702 $aBildea$b Costin Sorin 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830316103321 996 $aChemical process design$93951806 997 $aUNINA