LEADER 02384nam 2200553 a 450 001 9910830314503321 005 20230320162638.0 010 $a1-280-85607-6 010 $a9786610856077 010 $a0-470-51509-0 010 $a0-470-51508-2 035 $a(CKB)1000000000357379 035 $a(EBL)292598 035 $a(OCoLC)476052648 035 $a(SSID)ssj0000189258 035 $a(PQKBManifestationID)11196661 035 $a(PQKBTitleCode)TC0000189258 035 $a(PQKBWorkID)10156230 035 $a(PQKB)10469687 035 $a(MiAaPQ)EBC292598 035 $a(EXLCZ)991000000000357379 100 $a20070803d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aLarge deviations for Gaussian queues$b[electronic resource] $emodelling communication networks /$fMichel Mandjes 210 $aChichester $cWiley$dc2007 215 $a1 online resource (338 p.) 300 $aDescription based upon print version of record. 311 $a0-470-01523-3 320 $aIncludes bibliographical references and index. 327 $apt. A. Gaussian traffic and large deviations -- pt. B. Large deviations of Gaussian queues -- pt. C. Applications. 330 $aIn recent years the significance of Gaussian processes to communication networks has grown considerably. The inherent flexibility of the Gaussian traffic model enables the analysis, in a single mathematical framework, of systems with both long-range and short-range dependent input streams. Large Deviations for Gaussian Queues demonstrates how the Gaussian traffic model arises naturally, and how the analysis of the corresponding queuing model can be performed. The text provides a general introduction to Gaussian queues, and surveys recent research into the modelling of communications n 606 $aGaussian processes 606 $aTelecommunication$xTraffic$xMathematical models 615 0$aGaussian processes. 615 0$aTelecommunication$xTraffic$xMathematical models. 676 $a519.82 676 $a621.38215015192 700 $aMandjes$b Michel$g(Michael Robertus Hendrikus),$f1970-$0755624 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830314503321 996 $aLarge deviations for Gaussian queues$93951794 997 $aUNINA