LEADER 11678nam 2200541 450 001 9910830309803321 005 20230807193412.0 010 $a1-119-89692-4 010 $a1-119-89691-6 035 $a(MiAaPQ)EBC7267873 035 $a(Au-PeEL)EBL7267873 035 $a(BIP)085817636 035 $a(EXLCZ)9927459136100041 100 $a20230807d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aHybridized technologies for the treatment of mining effluents /$fedited by Elvis Fosso-Kankeu and Bhekie B. Mamba 210 1$aHoboken, NJ :$cJohn Wiley & Sons, Inc.,$d[2023] 210 4$dİ2023 215 $a1 online resource (312 pages) 311 08$aPrint version: Fosso-Kankeu, Elvis Hybridized Technologies for the Treatment of Mining Effluents Newark : John Wiley & Sons, Incorporated,c2023 9781119896425 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Passive Remediation of Acid Mine Drainage Using Phytoremediation: Role of Substrate, Plants, and External Factors in Inorganic Contaminants Removal -- 1.1 Introduction -- 1.2 Materials and Methods -- 1.2.1 Samples Collection and Characterization -- 1.2.2 Acquisition of the Plants and Reagents -- 1.2.3 Characterization of Samples -- 1.2.4 Quality Assurance and Quality Control (QA/QC) -- 1.2.5 Wetlands Design and Optimization Experiments -- 1.2.5.1 Wetland Design -- 1.2.5.2 Wetland Experimental Procedure and Assays -- 1.2.5.3 The Performance of the System -- 1.2.5.4 Determination of the Translocation and Distribution of Metals -- 1.2.5.5 Geochemical Modeling -- 1.3 Results and Discussion -- 1.3.1 Remediation Studies -- 1.3.1.1 Effect of FWS-CW on pH -- 1.3.1.2 Effect of FWS-CW on Electrical Conductivity -- 1.3.1.3 Effect of FWS-CW on Sulphate Concentration -- 1.3.1.4 Effect of FWS-CW on Metal Concentration -- 1.3.1.5 Role of Substrate in Metals Accumulation -- 1.3.1.6 Removal Efficiency of Metals and Sulphate in the Experimental System -- 1.3.2 Tolerance Index, Bioaccumulation, and Translocation Effects -- 1.3.2.1 Tolerance Index -- 1.3.2.2 Bioconcentration Factor -- 1.3.2.3 Translocation Factor -- 1.3.2.4 Metal Translocation and Distribution -- 1.3.3 Metals Concentration in Substrate and Vetiveria zizanioides Before and After Contact With AMD -- 1.3.4 Partitioning of Metals Between Substrate, Plants, and External Factors -- 1.3.5 Characterization of Solid Samples -- 1.3.5.1 Elemental Composition of the Substrate -- 1.3.5.2 Mineralogical Composition of the Substrate -- 1.3.5.3 Analysis of Vetiveria zizanioides Roots for Functional Group -- 1.3.5.4 Scanning Electron Microscope-Electron Dispersion Spectrometry of Vetiveria zizanioides Roots. 327 $a1.4 Chemical Species for Untreated and AMD-Treated Wetland With FWS-CW -- 1.5 Limitation of the Study -- 1.6 Conclusions and Recommendations -- References -- Chapter 2 Recovery of Strategically Important Heavy Metals from Mining Influenced Water: An Experimental Approach Based on Ion-Exchange -- Abbreviations -- 2.1 Introduction -- 2.2 Ion Exchange in Mine Water Treatment -- 2.2.1 Ion Exchange Terminology -- 2.2.2 Fundamentals of Ion Exchange Process -- 2.2.3 Selectivity of Ion-Exchange Materials -- 2.2.4 Chelating Cation Exchangers -- 2.3 Laboratory-Scale Ion Exchange Column Experiments -- 2.3.1 General Introduction to the Setup -- 2.3.2 Column Loading Process -- 2.3.3 Mass Transfer Zone -- 2.3.4 Regeneration Process (Deloading) -- 2.3.5 Metal Separation by Ion Exchange -- 2.3.6 Mass Balance Calculations -- 2.4 Case Study: Selective Recovery of Copper and Cobalt From a Chilean Mine Water -- 2.4.1 Problem Description and Objectives -- 2.4.2 Recovery of Copper from Mining Influenced Water -- 2.4.3 Cobalt Enrichment Using the Runoff Water from Previous Column Experiments -- 2.4.3.1 Column Experiment with TP 220 Resin Without pH Adjustment -- 2.4.3.2 Comparison of Breakthrough Curves in Cobalt Enrichment Experiments -- 2.4.4 Copper-Cobalt Separation During the Deloading Process -- 2.5 Case Study: Recovery of Zinc from Abandoned Mine Water Galleries in Saxony, Germany -- 2.6 Perspectives and Challenges -- Acknowledgments -- References -- Chapter 3 Remediation of Acid Mine Drainage Using Natural Materials: A Systematic Review -- 3.1 Introduction -- 3.2 Acid Mine Drainage -- 3.3 Formation of the Acid Mine Drainage -- 3.4 Potential Impacts of Acid Mine Drainage -- 3.4.1 The Impacts of AMD on the Environment and Ecology -- 3.5 Acid Mine Drainage Abatement/Prevention -- 3.6 Mechanisms of Pollutants Removal From AMD -- 3.6.1 Active Treatment. 327 $a3.6.2 Chemical Precipitation -- 3.6.3 Adsorption -- 3.6.4 Passive Treatment -- 3.6.5 Other Treatment Methods -- 3.6.5.1 Ion Exchange -- 3.6.5.2 Membrane Filtration -- 3.6.5.3 Acid Mine Drainage Treatment Using Native Materials -- 3.7 Conclusion -- References -- Chapter 4 Recent Development of Active Technologies for AMD Treatment -- Abbreviations -- 4.1 Introduction -- 4.1.1 Difference Between Active and Nonactive AMD Treatment Methods -- 4.1.2 Conventional Active Techniques for AMD Treatment -- 4.1.2.1 Alkali/Alkaline Neutralization Processes -- 4.1.2.2 In Situ Active AMD Treatment Processes -- 4.1.2.3 Microbiological Active AMD Treatment Systems -- 4.2 Recent Developments of Active AMD Treatment Technologies -- 4.2.1 Resource Recovery From Active AMD Treatment Technologies -- 4.2.1.1 Continuous Counter-Current-Based Technologies -- 4.2.1.2 Continuous Ion Filtration for Acid Mine Drainage Treatment -- 4.2.2 The Alkali-Barium-Calcium Process -- 4.2.3 Magnesium-Barium Oxide (MBO) Process -- 4.2.4 HybridICE Freeze Desalination Technology -- 4.2.5 Evaporation-Based Technologies -- 4.2.5.1 Multieffect Membrane Distillation (MEND) for AMD Treatment -- 4.2.5.2 Desalination of AMD Using Dewvaporation Process -- 4.2.5.3 Membrane-Based Technologies -- 4.3 Recent Disruptive Developments of AMD Treatment Technologies -- 4.3.1 Tailing Technology -- 4.3.2 Advanced Oxidation Processes -- 4.3.2.1 Ferrate Oxidation-Neutralization Process -- 4.3.2.2 Treatment of AMD by Ozone Oxidation -- 4.3.2.3 Ion-Exchange Technology for Active AMD Treatment -- References -- Chapter 5 Buffering Capacity of Soils in Mining Areas and Mitigation of Acid Mine Drainage Formation -- Abbreviations -- 5.1 Introduction -- 5.2 Control of Acid Mine Drainage -- 5.2.1 Water Covers -- 5.2.2 Mine Land Reclamation -- 5.2.3 Biocidal AMD Control -- 5.2.4 Alternative Dump Construction. 327 $a5.3 Treatment of Acid Mine Drainage -- 5.3.1 Active Treatment -- 5.3.1.1 Limestone -- 5.3.1.2 Hydrated Lime -- 5.3.1.3 Quicklime -- 5.3.1.4 Soda Ash -- 5.3.1.5 Caustic Soda -- 5.3.1.6 Ammonia -- 5.3.2 Passive Treatment -- 5.3.2.1 Biological Passive Treatment Systems -- 5.3.2.2 Geochemical Passive Treatment Systems -- 5.3.3 Emerging Passive Treatment Systems -- 5.3.3.1 Phytoremediation -- References -- Chapter 6 Novel Approaches to Passive and Semi-Passive Treatment of Zinc.Bearing Circumneutral Mine Waters in England and Wales -- 6.1 Introduction -- 6.1.1 Active Treatment Options for Zn -- 6.1.2 Passive Treatment Options for Zn -- 6.2 Hybrid Semi-Passive Treatment: Na2CO3 Dosing and Other Water Treatment Reagents -- 6.2.1 Abbey Consols Mine Water -- 6.2.2 Laboratory Scale Na2CO3 Dosing -- 6.2.3 Practical Implementation of Na2CO3 Dosing -- 6.3 Polishing of Trace Metals With Vertical Flow Reactors -- 6.4 Concluding Remarks -- References -- Chapter 7 Recovery of Drinking Water and Valuable Metals From Iron-Rich Acid Mine Water Through a Combined Biological, Chemical, and Physical Treatment Process -- 7.1 Introduction -- 7.1.1 General Problem with Mine Water -- 7.1.2 Legislation -- 7.1.3 Ideal Solution -- 7.2 Objectives -- 7.3 Literature -- 7.3.1 Mine Water Treatment Processes -- 7.3.1.1 Limestone -- 7.3.1.2 Gypsum Crystallization and Inhibition -- 7.3.1.3 ROC -- 7.3.1.4 Biological Iron (II) Oxidation -- 7.3.1.5 Selective Metal Removal -- 7.3.2 Solubilities -- 7.3.3 Pigment -- 7.4 Materials and Methods -- 7.4.1 Fe2+ Oxidation -- 7.4.1.1 Feedstock -- 7.4.1.2 Equipment -- 7.4.1.3 Procedure -- 7.4.1.4 Experimental -- 7.4.2 Neutralization (CaCO3, Na2CO3 and MgO) -- 7.4.2.1 Feedstock -- 7.4.2.2 Equipment -- 7.4.2.3 Procedure -- 7.4.2.4 Experimental -- 7.4.3 pH 7.5 Sludge From Na2CO3 as Alkali for Fe3+ Removal -- 7.4.3.1 Feedstock -- 7.4.3.2 Equipment. 327 $a7.4.3.3 Procedure -- 7.4.3.4 Experimental -- 7.4.4 Inhibition -- 7.4.4.1 Feedstock -- 7.4.4.2 Equipment -- 7.4.4.3 Procedure -- 7.4.4.4 Experimental -- 7.4.5 MgO/SiO2 Separation -- 7.4.5.1 Feedstock -- 7.4.5.2 Equipment -- 7.4.5.3 Procedure -- 7.4.5.4 Experimental -- 7.4.6 SiO2 Removal -- 7.4.7 Pigment Formation -- 7.4.7.1 Feedstock -- 7.4.7.2 Equipment -- 7.4.7.3 Procedure -- 7.4.7.4 Experimental -- 7.4.8 Analytical -- 7.4.9 Characterization of the Sludge -- 7.4.10 OLI -- 7.5 Results and Discussion -- 7.5.1 Chemical Composition -- 7.5.2 Biological Fe2+-Oxidation -- 7.5.3 CaCO3 as Alkali for Removal of Fe3+ and Remaining Metals -- 7.5.3.1 Limestone Neutralization -- 7.5.3.2 pH 7.5 Sludge from Na2CO3 as Alkali for Fe+3 Removal -- 7.5.4 MgO and Na2CO3 as Alkalis for Selective Removal of Fe3+ and Al3+ -- 7.5.4.1 Fe3+ Removal with MgO -- 7.5.4.2 Al3+ Removal with Na2CO3 -- 7.5.4.3 Metal Behavior as Predicted by OLI Simulations -- 7.5.5 Gypsum Crystallization -- 7.5.5.1 Kinetics Gypsum Seed Crystal Concentration and Reaction Order -- 7.5.5.2 Inhibition of Gypsum Crystallization in the Absence of Fe(OH)3 at Neutral pH -- 7.5.6 Separation of MgO and SiO2 -- 7.5.7 Si4+ Removal from Solution -- 7.5.8 Fe(OH)3 Purity and Pigment Formation -- 7.5.9 Economic Feasibility -- 7.6 Conclusions -- Acknowledgment -- References -- Chapter 8 Acid Mine Drainage Treatment Technologies: Challenges and Future Perspectives -- 8.1 Introduction -- 8.2 Acid Mine Drainage -- 8.2.1 Acid Mine Drainage Formation -- 8.2.2 Roles of Different Factors Influencing AMD Formation -- 8.2.2.1 Role of Bacteria in Acid Mine Drainage Generation -- 8.2.2.2 Role of Oxygen in Acid Mine Drainage Generation -- 8.2.2.3 Role of Water in Acid Mine Drainage Generation -- 8.2.2.4 Other Factors Influencing the Generation of AMD -- 8.3 Types of Mine Drainage -- 8.3.1 Neutral/Alkaline Mine Drainage. 327 $a8.4 Physicochemical Properties of AMD. 330 8 $aRecent developments consist of the integration/hybridization of technologies to achieve the effective removal of pollutants from acid mine drainage (AMD) effluents in a stepwise manner such as to ensure that the cost of the process is minimized, and the resulting water is fit for purpose. This book presents eight specialized chapters that provide a state-of-the-art review of the different hybridized technologies that have been developed over the years for the treatment of mine effluent, including AMD. The successful implementation and challenges of these technologies are highlighted to give the reader a perspective on the management of such waste in the mining industry. 606 $aMineral industries$xWaste disposal 610 $aMicrobiology 610 $aMineralogy 610 $aChemistry, Organic 610 $aScience 615 0$aMineral industries$xWaste disposal. 676 $a338.23 702 $aFosso-Kankeu$b Elvis 702 $aMamba$b Bhekie B. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830309803321 996 $aHybridized technologies for the treatment of mining effluents$93951758 997 $aUNINA