LEADER 05756nam 22006734a 450 001 9910830214603321 005 20170815113508.0 010 $a1-280-65439-2 010 $a9786610654390 010 $a0-470-04195-1 010 $a0-470-04194-3 035 $a(CKB)1000000000354739 035 $a(EBL)275873 035 $a(SSID)ssj0000101330 035 $a(PQKBManifestationID)11109136 035 $a(PQKBTitleCode)TC0000101330 035 $a(PQKBWorkID)10060143 035 $a(PQKB)10395232 035 $a(MiAaPQ)EBC275873 035 $a(OCoLC)777633356 035 $a(CaSebORM)9780471772552 035 $a(EXLCZ)991000000000354739 100 $a20060105d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAll-digital frequency synthesizer in deep-submicron CMOS$b[electronic resource] /$fRobert Bogdan Staszewski, Poras T. Balasara 205 $a1st edition 210 $aHoboken, N.J. $cWiley-Interscience$dc2006 215 $a1 online resource (281 p.) 300 $aDescription based upon print version of record. 311 $a0-471-77255-0 320 $aIncludes bibliographical references (p. 247-252) and index. 327 $aALL-DIGITAL FREQUENCY SYNTHESIZER IN DEEP-SUBMICRON CMOS; CONTENTS; PREFACE; Acknowledgments; 1 INTRODUCTION; 1.1 Frequency Synthesis; 1.1.1 Noise in Oscillators; 1.1.2 Frequency Synthesis Techniques; 1.2 Frequency Synthesizer as an Integral Part of an RF Transceiver; 1.2.1 Transmitter; 1.2.2 Receiver; 1.2.3 Toward Direct Transmitter Modulation; 1.3 Frequency Synthesizers for Mobile Communications; 1.3.1 Integer-N PLL Architecture; 1.3.2 Fractional-N PLL Architecture; 1.3.3 Toward an All-Digital PLL Approach; 1.4 Implementation of an RF Synthesizer 327 $a1.4.1 CMOS vs. Traditional RF Process Technologies1.4.2 Deep-Submicron CMOS; 1.4.3 Digitally Intensive Approach; 1.4.4 System Integration; 1.4.5 System Integration Challenges for Deep-Submicron CMOS; 2 DIGITALLY CONTROLLED OSCILLATOR; 2.1 Varactor in a Deep-Submicron CMOS Process; 2.2 Fully Digital Control of Oscillating Frequency; 2.3 LC Tank; 2.4 Oscillator Core; 2.5 Open-Loop Narrowband Digital-to-Frequency Conversion; 2.6 Example Implementation; 2.7 Time-Domain Mathematical Model of a DCO; 2.8 Summary; 3 NORMALIZED DCO; 3.1 Oscillator Transfer Function and Gain; 3.2 DCO Gain Estimation 327 $a3.3 DCO Gain Normalization3.4 Principle of Synchronously Optimal DCO Tuning Word Retiming; 3.5 Time Dithering of DCO Tuning Input; 3.5.1 Oscillator Tune Time Dithering Principle; 3.5.2 Direct Time Dithering of Tuning Input; 3.5.3 Update Clock Dithering Scheme; 3.6 Implementation of PVT and Acquisition DCO Bits; 3.7 Implementation of Tracking DCO Bits; 3.7.1 High-Speed Dithering of Fractional Varactors; 3.7.2 Dynamic Element Matching of Varactors; 3.7.3 DCO Varactor Rearrangement; 3.8 Time-Domain Model; 3.9 Summary; 4 ALL-DIGITAL PHASE-LOCKED LOOP; 4.1 Phase-Domain Operation 327 $a4.2 Reference Clock Retiming4.3 Phase Detection; 4.3.1 Difference Mode of ADPLL Operation; 4.3.2 Integer-Domain Operation; 4.4 Modulo Arithmetic of the Reference and Variable Phases; 4.4.1 Variable-Phase Accumulator (PV Block); 4.5 Time-to-Digital Converter; 4.5.1 Frequency Reference Edge Estimation; 4.6 Fractional Error Estimator; 4.6.1 Fractional-Division Ratio Compensation; 4.6.2 TDC Resolution Effect on Estimated Frequency Resolution; 4.6.3 Active Removal of Fractional Spurs Through TDC (Optional); 4.7 Frequency Reference Retiming by a DCO Clock; 4.7.1 Sense Amplifier-Based Flip-Flop 327 $a4.7.2 General Idea of Clock Retiming4.7.3 Implementation; 4.7.4 Time-Deferred Calculation of the Variable Phase (Optional); 4.8 Loop Gain Factor; 4.8.1 Phase-Error Dynamic Range; 4.9 Phase-Domain ADPLL Architecture; 4.9.1 Close-in Spurs Due to Injection Pulling; 4.10 PLL Frequency Response; 4.10.1 Conversion Between the s- and z-Domains; 4.11 Noise and Error Sources; 4.11.1 TDC Resolution Effect on Phase Noise; 4.11.2 Phase Noise Due to DCO ?? Dithering; 4.12 Type II ADPLL; 4.12.1 PLL Frequency Response of a Type II Loop; 4.13 Higher-Order ADPLL; 4.13.1 PLL Stability Analysis 327 $a4.14 Nonlinear Differential Term of an ADPLL 330 $aA new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die 606 $aFrequency synthesizers$xDesign and construction 606 $aWireless communication systems$xEquipment and supplies$xDesign and construction 606 $aMetal oxide semiconductors, Complementary$xDesign and construction 615 0$aFrequency synthesizers$xDesign and construction. 615 0$aWireless communication systems$xEquipment and supplies$xDesign and construction. 615 0$aMetal oxide semiconductors, Complementary$xDesign and construction. 676 $a621.3815363 676 $a621.3815486 700 $aStaszewski$b Robert Bogdan$f1965-$0302249 701 $aBalsara$b Poras T.$f1961-$0302250 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830214603321 996 $aAll-digital frequency synthesizer in deep-submicron CMOS$9730932 997 $aUNINA