LEADER 09061nam 2200457 450 001 9910830208203321 005 20230318212211.0 010 $a3-527-83388-9 010 $a3-527-83386-2 035 $a(MiAaPQ)EBC7131108 035 $a(Au-PeEL)EBL7131108 035 $a(CKB)25280413200041 035 $a(EXLCZ)9925280413200041 100 $a20230318d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aVan der Waals heterostructures $efabrications, properties and applications /$fedited by Zhuo Kang [and three others] 210 1$aWeinheim, Germany :$cWiley-VCH,$d[2023] 210 4$d©2023 215 $a1 online resource (338 pages) 300 $aIncludes index. 311 08$aPrint version: Zhang, Zheng Van der Waals Heterostructures Newark : John Wiley & Sons, Incorporated,c2022 9783527349500 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 The 2D Semiconductor Library -- 1.1 Introduction -- 1.2 Emerging 2DLMs for Future Electronics -- 1.2.1 Classification -- 1.2.2 Elemental 2DMLs -- 1.2.2.1 IV A Group -- 1.2.2.2 V group A -- 1.2.2.3 III A Group -- 1.2.3 Hexagonal Boron Nitride (h-BN) -- 1.2.4 Transition Metal Dichalcogenides (TMDCs) -- 1.2.5 Transition Metal Carbides (TMCs) -- 1.2.6 Transition Metal Oxides (TMOs) -- References -- Chapter 2 The 2D Semiconductor Synthesis and Performances -- 2.1 Exfoliation -- 2.1.1 Starting from Graphene -- 2.1.2 Semiconducting 2D Materials -- 2.1.3 Big Family of Exfoliated 2D Materials -- 2.1.4 Mechanical Exfoliation of 2D Materials -- 2.1.5 Liquid Exfoliation of 2D Materials -- 2.1.6 Other Exfoliation Method of 2D Materials -- 2.2 Chemical Vapor Deposition -- 2.2.1 Overview of Chemical Vapor Deposition -- 2.2.2 Atmospheric Pressure Chemical Vapor Deposition (APCVD) -- 2.2.2.1 Synthesis of Single-Element Materials (Graphene) -- 2.2.2.2 Synthesis of TMDCs Bielement Materials -- 2.2.3 Low-Pressure Chemical Vapor Deposition (LPCVD) -- 2.2.3.1 Synthesis of Single-Element Materials (Graphene) -- 2.2.3.2 Synthesis of TMDCs Bielement Materials -- 2.2.3.3 Synthesis of Multielement Materials -- 2.2.4 Plasma-Enhanced Chemical Vapor Deposition -- 2.2.4.1 Overview -- 2.2.4.2 Synthesis of Graphene by PECVD -- 2.2.4.3 Synthesis of VG Nanosheets by PECVD -- 2.2.4.4 Synthesis of TMDCs by PECVD -- 2.2.5 MOCVD -- 2.2.5.1 Overview -- 2.2.5.2 Synthesis of III-V Group Semiconductor by MOCVD -- 2.2.5.3 Synthesis of TMDCs by MOCVD -- References -- Chapter 3 The VdW Heterostructure Controllable Fabrications -- 3.1 Wet Transfer -- 3.1.1 Substrate Etching Techniques -- 3.1.2 Electrochemical Delamination Methods -- 3.1.3 Wedging Transfer Method -- 3.2 Controllable Selective Synthesis. 327 $a3.2.1 Controllable Synthesis of 2D-2D Heterostructures -- 3.2.1.1 Vertical 2D-2D Heterostructures -- 3.2.1.2 Horizontal 2D-2D Heterostructures -- 3.2.1.3 One-Dimensional Heterostructures -- 3.2.2 Controllable Synthesis of 2D-1D Heterostructures -- 3.2.3 Controllable Synthesis of 2D-3D Heterostructures -- 3.3 Dry Transfer -- 3.3.1 Thermal-release Tape -- 3.3.2 Stamps -- 3.3.3 The Pick-up Methods -- References -- Chapter 4 The Mixed-dimensional VdW Heterostructures -- 4.1 Categorization of Mixed-dimensional VdWHs -- 4.2 Strategies for Constructing Mixed-dimensional VdWHs -- 4.2.1 Transfer-assisted Assembly of Mixed-dimensional VdWHs -- 4.2.2 Direct Growth of Mixed-dimensional VdWHs -- 4.3 Electronic and Sensing Applications -- 4.3.1 Transistors and Spintronics -- 4.3.2 Chemical Sensors -- 4.4 Optoelectronic and Photonic Applications -- 4.4.1 2D-0D Hybridization -- 4.4.2 2D-1D Hybridization -- 4.4.3 2D-3D Hybridization -- 4.5 Energy Applications -- 4.5.1 Application in Photocatalytic Water Splitting -- 4.5.2 Application in Rechargeable Batteries -- 4.5.3 Application in Supercapacitors -- 4.6 Conclusions -- References -- Chapter 5 The VdW Heterostructure Interface Physics -- 5.1 Band Alignment and Charge Transfer in VdWHs -- 5.2 Magnetic Coupling in VdWHs -- 5.2.1 Applications in Valleytronics -- 5.2.2 Applications in Spintronics -- 5.3 Moiré Pattern -- 5.3.1 Band Structure in Moiré Lattice -- 5.3.2 Flat Band-Introduced Superconductivity in Bilayer Graphene -- 5.3.3 Moiré Excitons -- 5.3.4 Moiré Lattice Topology -- 5.4 VdWHs for Protection -- 5.4.1 Introduction of Hexagonal Boron Nitride -- 5.4.2 Graphene Capsulated by h-BN -- 5.4.3 Transition Metal Dichalcogenides Capsulated by h-BN -- 5.4.4 Black Phosphorus Capsulated by h-BN -- 5.5 Characterization Techniques for VdWHs. 327 $a5.5.1 Scanning Transmission Electron Microscopy for Characterization of Structural and Related Properties -- 5.5.2 Scanning Probe Microscopy for Characterization of Structural and Electrical Properties -- 5.5.3 Optical and Vibrational Spectroscopy for Characterization of Electron-, Exciton-, and Phonon-Related Properties -- References -- Chapter 6 The VdW Heterostructure Multi-field Coupling Effects -- 6.1 Introduction -- 6.2 The Multifield Coupling Effect Characterization for 2D Van der Waals Structures -- 6.2.1 The Multifield Microscopy Techniques on 2D VdW Structures -- 6.2.1.1 The Electric-Field-Integrated STM-STS Technique -- 6.2.1.2 The Thermal-Field-Integrated STM-STS Technique -- 6.2.1.3 The Multifield-Integrated TEM Technique -- 6.2.1.4 The Optical-Field-Integrated KPFM Technique -- 6.2.2 The Multifield Optical Spectroscopy Techniques on 2D VdW Structures -- 6.2.2.1 The TERS Technique Based on STM and Raman Spectroscopy -- 6.2.2.2 The S-SNOM Based on AFM -- 6.2.3 The Perspective of Multifield Integration Characterization for 2D VdW Structures -- 6.3 The Multifield Modulation for Electrical Properties of 2D Van der Waals Structures -- 6.3.1 Strain-Engineered Electrical Properties of 2D VdW Structures -- 6.3.2 Electric Field-Engineered Electrical Properties of 2D VdW Structures -- 6.3.3 Thermal-Engineered Electrical Properties of VdW Structures -- 6.4 The Multifield Modulation for Optical Properties of 2D Van der Waals Structures -- 6.4.1 Strain-Engineered Optical Properties of 2D VdW Structures -- 6.4.2 Electric-Engineered Optical Properties of 2D VdW Structures -- 6.4.3 Thermal-Engineered Optical Properties of VdW Structures -- References -- Chapter 7 VdW Heterostructure Electronics -- 7.1 Van der Waals PN Junctions -- 7.2 Van der Waals Metal-Semiconductor Junctions -- 7.3 Field-effect Transistor -- 7.3.1 Basic Structure. 327 $a7.3.2 Advantage Characteristics -- 7.3.3 2D Dielectric Materials -- 7.4 Junction Field-Effect Transistor -- 7.4.1 Current-Voltage Features -- 7.4.2 Working Principle -- 7.4.3 Device Structure -- 7.4.4 Applications -- 7.5 Tunneling Field-Effect Transistor -- 7.5.1 The History of TFET -- 7.5.2 Mechanism of TFET -- 7.5.3 Application of TFET -- 7.6 Van der Waals Integration -- References -- Chapter 8 VdW Heterostructure Optoelectronics -- 8.1 Photodetectors -- 8.1.1 Photovoltaic Effect -- 8.1.2 Photoconductive Effect -- 8.1.3 Tunneling Effect -- 8.1.4 Photo-Thermoelectric Effect -- 8.1.5 Improvement Strategies -- 8.2 Light Emission -- 8.2.1 Light-Emitting Diodes -- 8.2.2 Lasering -- 8.2.3 Single Photon -- 8.3 Optical Modulators -- 8.3.1 All-Optical Modulators -- 8.3.2 Electro-Optic Modulators -- 8.3.3 Thermo-Optic Modulators -- References -- Chapter 9 VdW Heterostructure Electrochemical Applications -- 9.1 Solar Energy -- 9.2 Van der Waals Heterostructure Application in Hydrogen Energy -- 9.2.1 Producing Hydrogen by Water Photolysis -- 9.2.2 Producing Hydrogen by Water Electrolysis -- 9.3 Battery -- 9.3.1 Lithium-ion Batteries, Sodium-ion Batteries, Potassium-ion Batteries -- 9.3.2 Supercapacitors -- 9.4 Catalyst -- 9.5 Biotechnology -- 9.5.1 Biosensors -- 9.5.2 Tissue Engineering -- References -- Chapter 10 Perspective and Outlook -- 10.1 Overall Development Status of 2D Materials -- 10.1.1 Material Preparation: Scalability, Uniformity, and Reproducibility -- 10.1.2 Metrology -- 10.1.3 Construction of Heterostructure: Industry-Compatible Integration Process -- 10.2 Compatibility Between 2D Van der Waals Device Processing and Silicon Technology -- 10.2.1 Compatibility of 2D Van der Waals Device Integration with Traditional Silicon-Based Process -- 10.2.2 Differences Between 2D van der Waals Devices and Traditional Silicon-Based Processes. 327 $a10.2.3 2D van der Waals Device Integration Beyond Silicon Technology -- 10.3 Promising Roadmap of Van der Waals Heterostructure Devices [Medium term: 5 years, Long term: 5-10 years] -- 10.4 Promising Roadmap of Optoelectronic Device -- 10.5 Conclusion and Prospect -- References -- Index -- EULA. 606 $aHeterostructures 615 0$aHeterostructures. 676 $a595.731 702 $aKang$b Zhuo 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830208203321 996 $aVan der Waals heterostructures$94082594 997 $aUNINA